Grey Wolf Optimizer for the Nurse Rostering Problem

This paper proposes a novel discrete version of Grey Wolf Optimizer (GWO) in addressing selected Second International Nurse Rostering Competition (INRC-II) problem instances. The position-updating mechanism in the original GWO is replaced with mutation and crossover operators. Experiments are carrie...

詳細記述

保存先:
書誌詳細
主要な著者: Ngoo, Chong Man, Goh, Say Leng, Jonathan Likoh Juis @ Juise
フォーマット: Conference or Workshop Item
言語:English
English
出版事項: 2022
主題:
オンライン・アクセス:https://eprints.ums.edu.my/id/eprint/34504/1/FULL%20TEXT.pdf
https://eprints.ums.edu.my/id/eprint/34504/2/ABSTRACT.pdf
https://eprints.ums.edu.my/id/eprint/34504/
https://ieeexplore.ieee.org/document/9845150
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料