Refinement of SOR method for the rational finite difference solution of first-order fredholm integro-differential equations
As it is known, the linear rational finite difference (LRFD) method has the advantage of its excellent stability, and the Successive Over-Relaxation (SOR) method has the advantage of fast convergence rate due to the flexible choice of parameter. In this paper, in order to make full use of the advant...
محفوظ في:
المؤلفون الرئيسيون: | Xu, M.-M, Jumat Sulaiman, Ali, L.H |
---|---|
التنسيق: | Proceedings |
اللغة: | English |
منشور في: |
American Institute of Physics Inc.
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://eprints.ums.edu.my/id/eprint/32540/1/Refinement%20of%20SOR%20method%20for%20the%20rational%20finite%20difference%20solution%20of%20first-order%20fredholm%20integro-differential%20equations.ABSTRACT.pdf https://eprints.ums.edu.my/id/eprint/32540/ https://aip.scitation.org/doi/10.1063/5.0075402 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Refinement of SOR iterative method for the linear rational finite difference solution of second-order Fredholm Integro-differential equations
بواسطة: Xu, Ming-Ming, وآخرون
منشور في: (2022) -
Rational finite difference solution of first-order fredholm integro-differential equations via SOR iteration
بواسطة: M.M. Xu, وآخرون
منشور في: (2021) -
SOR iterative method for the linear rational finite difference solution of second-order Fredholm integro-differential equations
بواسطة: Ming, Ming Xu, وآخرون
منشور في: (2022) -
Half-Sweep Refinement of SOR Iterative Method via Linear Rational Finite Difference Approximation for Second-Order Linear Fredholm Integro-Differential Equations
بواسطة: Xu, Ming-Ming, وآخرون
منشور في: (2022) -
Linear rational finite difference solution for solving first-order fredholm integro-differential equations
بواسطة: X. M. Ming, وآخرون
منشور في: (2020)