An Improvement of Computing Newton’s Direction for Finding Unconstrained Minimizer for Large-Scale Problems with an Arrowhead Hessian Matrix
In large-scale problems, classical Newton’s method requires solving a large linear system of equations resulting from determining the Newton direction. This process often related as a very complicated process, and it requires a lot of computation (either in time calculation or memory requirement per...
保存先:
主要な著者: | Khadizah Ghazali, Jumat Sulaiman, Yosza Dasril, Darmesah Gabda |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
2020
|
オンライン・アクセス: | https://eprints.ums.edu.my/id/eprint/25538/1/An%20Improvement%20of%20Computing%20Newton%E2%80%99s%20Direction%20for%20Finding%20Unconstrained%20Minimizer.pdf https://eprints.ums.edu.my/id/eprint/25538/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
An alternative approach for finding Newton's direction in solving large-scale unconstrained optimization for problems with an arrowhead Hessian matrix
著者:: Khadizah Ghazali, 等
出版事項: (2020) -
Newton-MSOR method for solving large-scale unconstrained optimization problems with an arrowhead Hessian matrices
著者:: Khadizah Ghazali, 等
出版事項: (2019) -
Newton method with explicit group iteration for solving large scale unconstrained optimization problems
著者:: Khadizah Ghazali, 等
出版事項: (2018) -
Modified Quasi-Newton Methods For Large-Scale Unconstrained Optimization
著者:: Leong, Wah June
出版事項: (2003) -
Preconditioning on subspace quasi-Newton method for large scale unconstrained optimization
著者:: Sim, Hong Seng, 等
出版事項: (2013)