The Electrical Breakdown Strength of Pre-stretched Elastomers, with and without Sample Volume Conservation

n practice, the electrical breakdown strength of dielectric electroactive polymers (DEAPs) determines the upper limit for transduction. During DEAP actuation, the thickness of the elastomer decreases, and thus the electrical field increases and the breakdown process is determined by a coupled electr...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Shamsul, Zakaria, Morshuis, Peter H. F., Benslimane, Mohamed Yahia, Yu, Liyun, Skov, Anne Ladegaard
التنسيق: مقال
اللغة:English
English
منشور في: IOP Publishing 2015
الموضوعات:
الوصول للمادة أونلاين:http://umpir.ump.edu.my/id/eprint/9352/1/The%20electrical%20breakdown%20strength%20of%20pre-stretched%20elastomers%2C%20with%20and%20without%20sample%20volume%20conservation.pdf
http://umpir.ump.edu.my/id/eprint/9352/7/The%20Electrical%20Breakdown%20Strength%20of%20Pre-Stretched%20Elastomers%2C%20With%20and%20Without%20Sample%20Volume%20Conservation.pdf
http://umpir.ump.edu.my/id/eprint/9352/
http://dx.doi.org/10.1088/0964-1726/24/5/055009
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:n practice, the electrical breakdown strength of dielectric electroactive polymers (DEAPs) determines the upper limit for transduction. During DEAP actuation, the thickness of the elastomer decreases, and thus the electrical field increases and the breakdown process is determined by a coupled electro-mechanical failure mechanism. A thorough understanding of the mechanisms behind the electro-mechanical breakdown process is required for developing reliable transducers. In this study, two experimental configurations were used to determine the stretch dependence of the electrical breakdown strength of polydimethylsiloxane (PDMS) elastomers. Breakdown strength was determined for samples with and without volume conservation and was found to depend strongly on the stretch ratio and the thickness of the samples. PDMS elastomers are shown to increase breakdown strength by a factor of ~3 when sample thickness decreases from 120 to 30 μm, while the biaxial pre-stretching (λ = 2) of samples leads similarly to an increase in breakdown strength by a factor of ~2.5.