Integration of Seasonal Autoregressive Integrated Moving Average and Bayesian Methods to Predict Production Throughput Under Random Variables
Analysing and modelling efforts on production throughput are getting more complex due to random variables in today’s dynamic production systems. The objective of this study is to take multiple random variables of production into account when aiming for production throughput with higher accuracy of...
محفوظ في:
المؤلف الرئيسي: | Amir, Azizi |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Faculty Mechanical Engineering, UMP
2014
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://umpir.ump.edu.my/id/eprint/8238/1/Integration_of_Seasonal_Autoregressive_Integrated_Moving_Average_and_Bayesian_Methods_to_Predict_Production_Throughput_Under_Random_Variables.pdf http://umpir.ump.edu.my/id/eprint/8238/ http://dx.doi.org/10.15282/jmes.7.2014.23.0121 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
An Integrated Approach Based on SARIMA and Bayesian to Estimate Production Throughput under Five Random Variables
بواسطة: Azizi, Amir
منشور في: (2013) -
Flood Prediction Using Seasonal Autoregressive Integrated Moving Average (SARIMA) Model
بواسطة: Abdulrazak Yahya, Saleh, وآخرون
منشور في: (2019) -
Short term load forecastiong using time seasonal autoregressive integrated moving average
بواسطة: Wan Abdul Razak, Intan Azmira, وآخرون
منشور في: (2007) -
Seasonal Autoregressive Integrated Moving Average Model for Forecasting Tourist Arrivals in Malaysia (SCOPUS)
بواسطة: Yen, Phoong Seuk
منشور في: (2021) -
Forecasting road traffic fatalities in Malaysia using Seasonal
Autoregressive Integrated Moving Average (SARIMA) model
بواسطة: Sim, Ho Jen, وآخرون
منشور في: (2022)