Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer
Chromatography technique is widely used for protein separation. Conventional packed bed column chromatography has several limitations. Membrane chromatography was a suitable alternative technique for protein separation. Specific monomer can be grafted to uncharged membrane to transform into membrane...
Saved in:
Main Author: | |
---|---|
Format: | Undergraduates Project Papers |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/7169/1/Development%20of%20anion-exchange%20membrane%20chromatography%20from%20regenerated%20cellulose%20membrane%20by%20attaching%20different%20spacer%20arm%20length%20of%20diamine%20monomer.pdf http://umpir.ump.edu.my/id/eprint/7169/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.7169 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.71692023-07-18T01:38:27Z http://umpir.ump.edu.my/id/eprint/7169/ Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer Lee, Yue Wei QD Chemistry Chromatography technique is widely used for protein separation. Conventional packed bed column chromatography has several limitations. Membrane chromatography was a suitable alternative technique for protein separation. Specific monomer can be grafted to uncharged membrane to transform into membrane chromatography material. Optimization of parameters involve during this chemical modification is crucial for the development of high performance membrane chromatography for protein separation. The purpose of this research is to develop anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm lengths of diamine monomer. Regenerated cellulose membrane was activated in a solution containing sodium hydroxide (NaOH) and epichlorohydrin (EPI). Then, the membrane was immersed in diamine solution of 1,2-diaminoethane or 1,4-diaminobutanhe to produce positively charged membrane chromatography. The concentration of NaOH activation from 0.05M to 0.50M and diamine monomer concentration from 0.25M to 2.0M during grafting were studied. The optimum concentration of NaOH was 0.20M which produced anion exchange membrane capacity of 0.310±0.033 mgBSA/cm2 membrane. High concentration of diamine monomer at 2.0M 1,4-diaminobutane showed a binding capacity of 0.385±0.027mgBSA/cm2 membrane. Based on FTIR transmission peak, both N-H and C-N functional groups were detected in modified membrane that indicated the successful of grafting process. 2013 Undergraduates Project Papers NonPeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/7169/1/Development%20of%20anion-exchange%20membrane%20chromatography%20from%20regenerated%20cellulose%20membrane%20by%20attaching%20different%20spacer%20arm%20length%20of%20diamine%20monomer.pdf Lee, Yue Wei (2013) Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang. |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
QD Chemistry |
spellingShingle |
QD Chemistry Lee, Yue Wei Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer |
description |
Chromatography technique is widely used for protein separation. Conventional packed bed column chromatography has several limitations. Membrane chromatography was a suitable alternative technique for protein separation. Specific monomer can be grafted to uncharged membrane to transform into membrane chromatography material. Optimization of parameters involve during this chemical modification is crucial for the development of high performance membrane chromatography for protein separation. The purpose of this research is to develop anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm lengths of diamine monomer. Regenerated cellulose membrane was activated in a solution containing sodium hydroxide (NaOH) and epichlorohydrin (EPI). Then, the membrane was immersed in diamine solution of 1,2-diaminoethane or 1,4-diaminobutanhe to produce positively charged membrane chromatography. The concentration of NaOH activation from 0.05M to 0.50M and diamine monomer concentration from 0.25M to 2.0M during grafting were studied. The optimum concentration of NaOH was 0.20M which produced anion exchange membrane capacity of 0.310±0.033 mgBSA/cm2 membrane. High concentration of diamine monomer at 2.0M 1,4-diaminobutane showed a binding capacity of 0.385±0.027mgBSA/cm2 membrane. Based on FTIR transmission peak, both N-H and C-N functional groups were detected in modified membrane that indicated the successful of grafting process. |
format |
Undergraduates Project Papers |
author |
Lee, Yue Wei |
author_facet |
Lee, Yue Wei |
author_sort |
Lee, Yue Wei |
title |
Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer |
title_short |
Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer |
title_full |
Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer |
title_fullStr |
Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer |
title_full_unstemmed |
Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer |
title_sort |
development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer |
publishDate |
2013 |
url |
http://umpir.ump.edu.my/id/eprint/7169/1/Development%20of%20anion-exchange%20membrane%20chromatography%20from%20regenerated%20cellulose%20membrane%20by%20attaching%20different%20spacer%20arm%20length%20of%20diamine%20monomer.pdf http://umpir.ump.edu.my/id/eprint/7169/ |
_version_ |
1772811329206222848 |
score |
13.211869 |