Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization
Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Publishing Corporation
2014
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/6465/1/Feature_Selection_and_Classifier_Parameters_Estimation_for_EEG_Signals_Peak_Detection_Using_Particle_Swarm_Optimization.pdf http://umpir.ump.edu.my/id/eprint/6465/ http://dx.doi.org/10.1155/2014/973063 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.6465 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.64652018-05-18T07:03:31Z http://umpir.ump.edu.my/id/eprint/6465/ Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization Mohd Zaidi, Mohd Tumari Asrul, Adam Mohd Ibrahim, Shapiai Mohd Saberi, Mohamad Marizan, Mubin TK Electrical engineering. Electronics Nuclear engineering Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model. Hindawi Publishing Corporation 2014 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/6465/1/Feature_Selection_and_Classifier_Parameters_Estimation_for_EEG_Signals_Peak_Detection_Using_Particle_Swarm_Optimization.pdf Mohd Zaidi, Mohd Tumari and Asrul, Adam and Mohd Ibrahim, Shapiai and Mohd Saberi, Mohamad and Marizan, Mubin (2014) Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization. The Scientific World Journal, 2014. pp. 1-13. ISSN 2356-6140 (print); 1537-744X (online) http://dx.doi.org/10.1155/2014/973063 DOI: 10.1155/2014/973063 |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Mohd Zaidi, Mohd Tumari Asrul, Adam Mohd Ibrahim, Shapiai Mohd Saberi, Mohamad Marizan, Mubin Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization |
description |
Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model. |
format |
Article |
author |
Mohd Zaidi, Mohd Tumari Asrul, Adam Mohd Ibrahim, Shapiai Mohd Saberi, Mohamad Marizan, Mubin |
author_facet |
Mohd Zaidi, Mohd Tumari Asrul, Adam Mohd Ibrahim, Shapiai Mohd Saberi, Mohamad Marizan, Mubin |
author_sort |
Mohd Zaidi, Mohd Tumari |
title |
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization |
title_short |
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization |
title_full |
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization |
title_fullStr |
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization |
title_full_unstemmed |
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization |
title_sort |
feature selection and classifier parameters estimation for eeg signals peak detection using particle swarm optimization |
publisher |
Hindawi Publishing Corporation |
publishDate |
2014 |
url |
http://umpir.ump.edu.my/id/eprint/6465/1/Feature_Selection_and_Classifier_Parameters_Estimation_for_EEG_Signals_Peak_Detection_Using_Particle_Swarm_Optimization.pdf http://umpir.ump.edu.my/id/eprint/6465/ http://dx.doi.org/10.1155/2014/973063 |
_version_ |
1643665383631093760 |
score |
13.211869 |