Addressing imbalance in health datasets: A new method NR-clustering SMOTE and distance metric modification
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, sever...
保存先:
主要な著者: | Hairani, Hairani, Widiyaningtyas, Triyanna, Prasetya, Didik Dwi, Afrig, Aminuddin |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Tech Science Press
2025
|
主題: | |
オンライン・アクセス: | http://umpir.ump.edu.my/id/eprint/44043/1/Addressing%20imbalance%20in%20health%20datasets.pdf http://umpir.ump.edu.my/id/eprint/44043/ https://doi.org/10.32604/cmc.2024.060837 https://doi.org/10.32604/cmc.2024.060837 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
SVD-gorank: Recommender system algorithm using SVD and gower's ranking
著者:: Saifudin, Ilham, 等
出版事項: (2025) -
Handling imbalance visualized pattern dataset for yield prediction
著者:: Megat Mohamed Noor, Megat Norulazmi, 等
出版事項: (2008) -
Classification of Quranic topics using SMOTE technique
著者:: Arkok, Bassam, 等
出版事項: (2021) -
Enhancing Accuracy Of Credit Scoring Classification With Imbalance Data Using Synthetic Minority Oversampling Technique-Support Vector Machine (SMOTE-SVM) Model
著者:: Bingamawa, Muhammad Tosan
出版事項: (2017) -
Fuzzy and smote resampling technique for imbalanced data sets
著者:: Zorkeflee, Maisarah, 等
出版事項: (2015)