Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks
Accurate estimation of the state of charge (SoC) in electric vehicle (EV) batteries is essential for effective battery management and optimal performance. This study investigates the application of Kolmogorov-Arnold Networks (KAN) for SoC estimation, comparing its performance against Artificial Neur...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier
2024
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/42915/1/Battery%20state%20of%20charge%20estimation%20for%20electric%20vehicle_ABST.pdf http://umpir.ump.edu.my/id/eprint/42915/2/Battery%20state%20of%20charge%20estimation%20for%20electric%20vehicle%20using%20Kolmogorov-Arnold%20networks.pdf http://umpir.ump.edu.my/id/eprint/42915/ https://doi.org/10.1016/j.energy.2024.133417 https://doi.org/10.1016/j.energy.2024.133417 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Internet
http://umpir.ump.edu.my/id/eprint/42915/1/Battery%20state%20of%20charge%20estimation%20for%20electric%20vehicle_ABST.pdfhttp://umpir.ump.edu.my/id/eprint/42915/2/Battery%20state%20of%20charge%20estimation%20for%20electric%20vehicle%20using%20Kolmogorov-Arnold%20networks.pdf
http://umpir.ump.edu.my/id/eprint/42915/
https://doi.org/10.1016/j.energy.2024.133417
https://doi.org/10.1016/j.energy.2024.133417