Flexible, ultralight, and high-energy density electrochemical capacitors using sustainable materials
Development of flexible, ultralight, scalable and non-leaking energy storage devices such as electrochemical capacitors that are on par with commercial standards and offer compliances while retaining safety remain a significant challenge for the realization of wearable devices. Generally, the bottle...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier Ltd
2022
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/42642/1/Flexible%2C%20ultralight%2C%20and%20high-energy%20density%20electrochemical.pdf http://umpir.ump.edu.my/id/eprint/42642/2/Flexible%2C%20ultralight%2C%20and%20high-energy%20density%20electrochemical%20capacitors%20using%20sustainable%20materials_ABS.pdf http://umpir.ump.edu.my/id/eprint/42642/ https://doi.org/10.1016/j.electacta.2022.140239 https://doi.org/10.1016/j.electacta.2022.140239 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Development of flexible, ultralight, scalable and non-leaking energy storage devices such as electrochemical capacitors that are on par with commercial standards and offer compliances while retaining safety remain a significant challenge for the realization of wearable devices. Generally, the bottleneck to the improvement of such devices is the need to use ecofriendly electrode and electrolyte materials with desirable surface, electrochemical and mechanical properties. Thus, this study provides a new platform for development of flexible, ultralight, freestanding electrochemical capacitor using a composite of cellulose/SWCNTs (CL/CNTs) electrode films and a new cellulose/NaHSO4 hydrogel electrolyte. Herein, we took advantage of the renewability and flexibility of cellulose in combination with the high conductivity and storage capacity of SWCNTs to create a high specific capacitance, energy and power density. Moreover, the new cellulose/NaHSO4 hydrogel electrolyte provided stable cycling, leading to non-leakage device exhibiting ∼100% capacitance retention after 3000 cycles. |
---|