Diagnosis of hearing impairment based on wavelet transformation and machine learning approach

Hearing impairment has become the most widespread sensory disorder in the world, obstructing human-to-human communication and comprehension. The EEG-based brain-computer interface (BCI) technology may be an important solution to rehabilitating their hearing capacity for people who are unable to sust...

Full description

Saved in:
Bibliographic Details
Main Authors: Islam, Md. Nahidul, Norizam, Sulaiman, Mahfuzah, Mustafa
Format: Conference or Workshop Item
Language:English
English
Published: Springer Science and Business Media Deutschland GmbH 2022
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/39580/1/Diagnosis%20of%20Hearing%20Impairment%20Based%20on%20Wavelet%20Transformation.pdf
http://umpir.ump.edu.my/id/eprint/39580/2/Diagnosis%20of%20hearing%20impairment%20based%20on%20wavelet%20transformation%20and%20machine%20learning%20approach_ABS.pdf
http://umpir.ump.edu.my/id/eprint/39580/
https://doi.org/10.1007/978-981-16-8690-0_62
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hearing impairment has become the most widespread sensory disorder in the world, obstructing human-to-human communication and comprehension. The EEG-based brain-computer interface (BCI) technology may be an important solution to rehabilitating their hearing capacity for people who are unable to sustain verbal contact and behavioral response by sound stimulation. Auditory evoked potentials (AEPs) are a kind of EEG signal produced by an acoustic stimulus from the brain scalp. This study aims to develop an intelligent hearing level assessment technique using AEP signals to address these concerns. First, we convert the raw AEP signals into the time–frequency image using the continuous wavelet transform (CWT). Then, the Support vector machine (SVM) approach is used for classifying the time–frequency images. This study uses the reputed publicly available dataset to check the validation of the proposed approach. This approach achieves a maximum of 95.21% classification accuracy, which clearly indicates that the approach provides a very encouraging performance for detecting the AEPs responses in determining human auditory level.