Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects
This research investigated the convective boundary layer flow and heat transfer of Williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects. Human blood is employed as a based fluid while magnetite (Fe3O4) and copper (Cu) are taken as the hybrid ferroparticle. Th...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Akademia Baru
2023
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/38251/1/Boundary%20layer%20flow%20of%20williamson%20hybrid%20ferrofluid%20over%20a%20permeable%20stretching%20sheet.pdf http://umpir.ump.edu.my/id/eprint/38251/ https://doi.org/10.37934/cfdl.15.3.112122 https://doi.org/10.37934/cfdl.15.3.112122 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.38251 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.382512023-09-05T00:17:11Z http://umpir.ump.edu.my/id/eprint/38251/ Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects Wan Rosli, Wan Muhammad Hilmi Mohamed, Muhammad Khairul Anuar Md Sarif, Norhafizah Mohammad, Nurul Farahain Soid, Siti Khuzaimah Q Science (General) QA Mathematics This research investigated the convective boundary layer flow and heat transfer of Williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects. Human blood is employed as a based fluid while magnetite (Fe3O4) and copper (Cu) are taken as the hybrid ferroparticle. The study started with transforming the nonlinear partial differential equation system that governed the model to a more convenience non-linear dimensionless ordinary differential equations using the similarity transformation. The transformed equations obtained then are solved numerically using the Runge-Kutta-Fehlberg (RKF45) method in Maple software. The characteristics and effects of stretching parameter, permeability parameter, thermal radiation parameter as well as the ferroparticle volume fraction in the Williamson hybrid ferrofluid towards the temperature profiles, velocity profiles as well as the Nusselt number and the skin friction coefficient are analysed and discussed. The result of this research for various pertinent parameter varies differently. It can be concluded that the increase in magnetic parameter, the Williamson parameter, the stretching parameter, and the permeability rate parameter increase the skin friction and reduced the velocity profile. Furthermore, the increase in stretching parameter, thermal radiation parameter and the permeability rate results to the increase in the Nusselt number. Penerbit Akademia Baru 2023 Article PeerReviewed pdf en cc_by_nc_4 http://umpir.ump.edu.my/id/eprint/38251/1/Boundary%20layer%20flow%20of%20williamson%20hybrid%20ferrofluid%20over%20a%20permeable%20stretching%20sheet.pdf Wan Rosli, Wan Muhammad Hilmi and Mohamed, Muhammad Khairul Anuar and Md Sarif, Norhafizah and Mohammad, Nurul Farahain and Soid, Siti Khuzaimah (2023) Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects. CFD Letters, 15 (3). pp. 112-122. ISSN 2180-1363. (Published) https://doi.org/10.37934/cfdl.15.3.112122 https://doi.org/10.37934/cfdl.15.3.112122 |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
Q Science (General) QA Mathematics |
spellingShingle |
Q Science (General) QA Mathematics Wan Rosli, Wan Muhammad Hilmi Mohamed, Muhammad Khairul Anuar Md Sarif, Norhafizah Mohammad, Nurul Farahain Soid, Siti Khuzaimah Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects |
description |
This research investigated the convective boundary layer flow and heat transfer of Williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects. Human blood is employed as a based fluid while magnetite (Fe3O4) and copper (Cu) are taken as the hybrid ferroparticle. The study started with transforming the nonlinear partial differential equation system that governed the model to a more convenience non-linear dimensionless ordinary differential equations using the similarity transformation. The transformed equations obtained then are solved numerically using the Runge-Kutta-Fehlberg (RKF45) method in Maple software. The characteristics and effects of stretching parameter, permeability parameter, thermal radiation parameter as well as the ferroparticle volume fraction in the Williamson hybrid ferrofluid towards the temperature profiles, velocity profiles as well as the Nusselt number and the skin friction coefficient are analysed and discussed. The result of this research for various pertinent parameter varies differently. It can be concluded that the increase in magnetic parameter, the Williamson parameter, the stretching parameter, and the permeability rate parameter increase the skin friction and reduced the velocity profile. Furthermore, the increase in stretching parameter, thermal radiation parameter and the permeability rate results to the increase in the Nusselt number. |
format |
Article |
author |
Wan Rosli, Wan Muhammad Hilmi Mohamed, Muhammad Khairul Anuar Md Sarif, Norhafizah Mohammad, Nurul Farahain Soid, Siti Khuzaimah |
author_facet |
Wan Rosli, Wan Muhammad Hilmi Mohamed, Muhammad Khairul Anuar Md Sarif, Norhafizah Mohammad, Nurul Farahain Soid, Siti Khuzaimah |
author_sort |
Wan Rosli, Wan Muhammad Hilmi |
title |
Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects |
title_short |
Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects |
title_full |
Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects |
title_fullStr |
Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects |
title_full_unstemmed |
Boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects |
title_sort |
boundary layer flow of williamson hybrid ferrofluid over a permeable stretching sheet with thermal radiation effects |
publisher |
Penerbit Akademia Baru |
publishDate |
2023 |
url |
http://umpir.ump.edu.my/id/eprint/38251/1/Boundary%20layer%20flow%20of%20williamson%20hybrid%20ferrofluid%20over%20a%20permeable%20stretching%20sheet.pdf http://umpir.ump.edu.my/id/eprint/38251/ https://doi.org/10.37934/cfdl.15.3.112122 https://doi.org/10.37934/cfdl.15.3.112122 |
_version_ |
1776247231466176512 |
score |
13.211869 |