Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems
In this paper, a new variant of Manta Ray Foraging Optimization (MRFO) algorithm is introduced to deal with real parameter constrained optimization problem. Gradient-based Mutation MRFO (GbM-MRFO) is derived from basic strategy of MRFO and synergized with the Gradient-based Mutation strategy. MRFO i...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/36959/1/Gradient-based%20mutation%20manta%20ray%20foraging%20optimization%20%28gbm-mrfo%29%20for%20solving%20constrained%20real-world%20problems.pdf http://umpir.ump.edu.my/id/eprint/36959/ https://ncon-pgr.ump.edu.my/index.php/en/?option=com_fileman&view=file&routed=1&name=E-BOOK%20NCON%202022%20.pdf&folder=E-BOOK%20NCON%202022&container=fileman-files |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.36959 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.369592023-02-10T03:44:48Z http://umpir.ump.edu.my/id/eprint/36959/ Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems Ahmad Azwan, Abdul Razak Ahmad Nor Kasruddin, Nasir T Technology (General) TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering In this paper, a new variant of Manta Ray Foraging Optimization (MRFO) algorithm is introduced to deal with real parameter constrained optimization problem. Gradient-based Mutation MRFO (GbM-MRFO) is derived from basic strategy of MRFO and synergized with the Gradient-based Mutation strategy. MRFO is a recently new introduced algorithm that consists of strategy of foraging adopted by Manta Ray while Gradient-based Mutation (GbM) is a feasibility-and solution repair strategy adopted from ϵ-Matrix-Adaptation Evolution Strategy (ϵ-MAES). MRFO is proven to solve artificial benchmark-function test by relatively good performance compared to several state-of-the-art algorithm while GbM is a productive approach to repair solution which led to improve the feasibility of the solution throughout the search by using Jacobian approximation in finite differences. GbM-MRFO turn out to be a competitive optimization algorithm on solving constrained optimization problem of Three-bar Truss problem. The performance of GbM-MRFO is proven to be efficient in solving the problems by providing lighter weight of truss with better accuracy of solution. 2022-11-15 Conference or Workshop Item PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/36959/1/Gradient-based%20mutation%20manta%20ray%20foraging%20optimization%20%28gbm-mrfo%29%20for%20solving%20constrained%20real-world%20problems.pdf Ahmad Azwan, Abdul Razak and Ahmad Nor Kasruddin, Nasir (2022) Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems. In: The 6th National Conference for Postgraduate Research (NCON-PGR 2022), 15 November 2022 , Virtual Conference, Universiti Malaysia Pahang, Malaysia. p. 122.. https://ncon-pgr.ump.edu.my/index.php/en/?option=com_fileman&view=file&routed=1&name=E-BOOK%20NCON%202022%20.pdf&folder=E-BOOK%20NCON%202022&container=fileman-files |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
T Technology (General) TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
T Technology (General) TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering Ahmad Azwan, Abdul Razak Ahmad Nor Kasruddin, Nasir Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems |
description |
In this paper, a new variant of Manta Ray Foraging Optimization (MRFO) algorithm is introduced to deal with real parameter constrained optimization problem. Gradient-based Mutation MRFO (GbM-MRFO) is derived from basic strategy of MRFO and synergized with the Gradient-based Mutation strategy. MRFO is a recently new introduced algorithm that consists of strategy of foraging adopted by Manta Ray while Gradient-based Mutation (GbM) is a feasibility-and solution repair strategy adopted from ϵ-Matrix-Adaptation Evolution Strategy (ϵ-MAES). MRFO is proven to solve artificial benchmark-function test by relatively good performance compared to several state-of-the-art algorithm while GbM is a productive approach to repair solution which led to improve the feasibility of the solution throughout the search by using Jacobian approximation in finite differences. GbM-MRFO turn out to be a competitive optimization algorithm on solving constrained optimization problem of Three-bar Truss problem. The performance of GbM-MRFO is proven to be efficient in solving the problems by providing lighter weight of truss with better accuracy of solution. |
format |
Conference or Workshop Item |
author |
Ahmad Azwan, Abdul Razak Ahmad Nor Kasruddin, Nasir |
author_facet |
Ahmad Azwan, Abdul Razak Ahmad Nor Kasruddin, Nasir |
author_sort |
Ahmad Azwan, Abdul Razak |
title |
Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems |
title_short |
Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems |
title_full |
Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems |
title_fullStr |
Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems |
title_full_unstemmed |
Gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems |
title_sort |
gradient-based mutation manta ray foraging optimization (gbm-mrfo) for solving constrained real-world problems |
publishDate |
2022 |
url |
http://umpir.ump.edu.my/id/eprint/36959/1/Gradient-based%20mutation%20manta%20ray%20foraging%20optimization%20%28gbm-mrfo%29%20for%20solving%20constrained%20real-world%20problems.pdf http://umpir.ump.edu.my/id/eprint/36959/ https://ncon-pgr.ump.edu.my/index.php/en/?option=com_fileman&view=file&routed=1&name=E-BOOK%20NCON%202022%20.pdf&folder=E-BOOK%20NCON%202022&container=fileman-files |
_version_ |
1758578264830377984 |
score |
13.211869 |