An overview of effect of activation functions on training and performance of artificial neural network modelling
This paper presents an overview of the effect of the activation functions on the training and performance of artificial neural network modelling. An artificial neural network's activation functions are mathematical formulas that are essential to its design. Activation functions are a critical c...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/36927/1/An%20overview%20of%20effect%20of%20activation%20functions%20on%20training%20and%20performance%20of%20artificial%20neural%20network%20modelling.pdf http://umpir.ump.edu.my/id/eprint/36927/ https://ncon-pgr.ump.edu.my/index.php/en/?option=com_fileman&view=file&routed=1&name=E-BOOK%20NCON%202022%20.pdf&folder=E-BOOK%20NCON%202022&container=fileman-files |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.36927 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.369272023-02-07T04:17:43Z http://umpir.ump.edu.my/id/eprint/36927/ An overview of effect of activation functions on training and performance of artificial neural network modelling Md Munirul, Hasan Rahman, Md Mustafizur Suraya, Abu Bakar Islam, Mir Sujaul Kabir, Muhammad Nomani QA75 Electronic computers. Computer science QA76 Computer software T Technology (General) TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery This paper presents an overview of the effect of the activation functions on the training and performance of artificial neural network modelling. An artificial neural network's activation functions are mathematical formulas that are essential to its design. Activation functions are a critical component of artificial neural networks since they impact the performance of the ANN model to a considerable extent. It is a function that is utilized in order to obtain the output of the node. In an artificial neural network, defining an activation function is critical, as it directly affects the network's success rate. A concise summary of some of the most frequent activation functions that are utilized in neural networks. Activation functions are defined, their properties are compared, and their advantages and disadvantages are described in this paper. This review is provided with the definitions, features, performance comparisons, merits and demerits and applications of activation function in various areas. The activation function has an impact on the development of ANN models. It is found that sigmoid, Tanh and ReLU are the most used activation function and give better performance compared to others. 2022-11-15 Conference or Workshop Item PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/36927/1/An%20overview%20of%20effect%20of%20activation%20functions%20on%20training%20and%20performance%20of%20artificial%20neural%20network%20modelling.pdf Md Munirul, Hasan and Rahman, Md Mustafizur and Suraya, Abu Bakar and Islam, Mir Sujaul and Kabir, Muhammad Nomani (2022) An overview of effect of activation functions on training and performance of artificial neural network modelling. In: The 6th National Conference for Postgraduate Research (NCON-PGR 2022), 15 November 2022 , Virtual Conference, Universiti Malaysia Pahang, Malaysia. p. 115.. https://ncon-pgr.ump.edu.my/index.php/en/?option=com_fileman&view=file&routed=1&name=E-BOOK%20NCON%202022%20.pdf&folder=E-BOOK%20NCON%202022&container=fileman-files |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
QA75 Electronic computers. Computer science QA76 Computer software T Technology (General) TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery |
spellingShingle |
QA75 Electronic computers. Computer science QA76 Computer software T Technology (General) TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery Md Munirul, Hasan Rahman, Md Mustafizur Suraya, Abu Bakar Islam, Mir Sujaul Kabir, Muhammad Nomani An overview of effect of activation functions on training and performance of artificial neural network modelling |
description |
This paper presents an overview of the effect of the activation functions on the training and performance of artificial neural network modelling. An artificial neural network's activation functions are mathematical formulas that are essential to its design. Activation functions are a critical component of artificial neural networks since they impact the performance of the ANN model to a considerable extent. It is a function that is utilized in order to obtain the output of the node. In an artificial neural network, defining an activation function is critical, as it directly affects the network's success rate. A concise summary of some of the most frequent activation functions that are utilized in neural networks. Activation functions are defined, their properties are compared, and their advantages and disadvantages are described in this paper. This review is provided with the definitions, features, performance comparisons, merits and demerits and applications of activation function in various areas. The activation function has an impact on the development of ANN models. It is found that sigmoid, Tanh and ReLU are the most used activation function and give better performance compared to others. |
format |
Conference or Workshop Item |
author |
Md Munirul, Hasan Rahman, Md Mustafizur Suraya, Abu Bakar Islam, Mir Sujaul Kabir, Muhammad Nomani |
author_facet |
Md Munirul, Hasan Rahman, Md Mustafizur Suraya, Abu Bakar Islam, Mir Sujaul Kabir, Muhammad Nomani |
author_sort |
Md Munirul, Hasan |
title |
An overview of effect of activation functions on training and performance of artificial neural network modelling |
title_short |
An overview of effect of activation functions on training and performance of artificial neural network modelling |
title_full |
An overview of effect of activation functions on training and performance of artificial neural network modelling |
title_fullStr |
An overview of effect of activation functions on training and performance of artificial neural network modelling |
title_full_unstemmed |
An overview of effect of activation functions on training and performance of artificial neural network modelling |
title_sort |
overview of effect of activation functions on training and performance of artificial neural network modelling |
publishDate |
2022 |
url |
http://umpir.ump.edu.my/id/eprint/36927/1/An%20overview%20of%20effect%20of%20activation%20functions%20on%20training%20and%20performance%20of%20artificial%20neural%20network%20modelling.pdf http://umpir.ump.edu.my/id/eprint/36927/ https://ncon-pgr.ump.edu.my/index.php/en/?option=com_fileman&view=file&routed=1&name=E-BOOK%20NCON%202022%20.pdf&folder=E-BOOK%20NCON%202022&container=fileman-files |
_version_ |
1758578260446281728 |
score |
13.211869 |