Synthetic multivariate data generation procedure with various outlier scenarios using R programming language
A synthetic data generation procedure is a procedure to generate data from either a statistical or mathematical model. The data generation procedure has been used in simulation studies to compare statistical performance methods or propose a new statistical method with a specific distribution. A synt...
Saved in:
Main Authors: | Sharifah Sakinah, Syed Abd Mutalib, Siti Zanariah, Satari, Wan Nur Syahidah, Wan Yusoff |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Teknologi Malaysia
2022
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/33887/1/2022%20Mutalib%20et%20al%20jurnal%20teknologi.pdf http://umpir.ump.edu.my/id/eprint/33887/ https://doi.org/10.11113/jurnalteknologi.v84.17900 https://doi.org/10.11113/jurnalteknologi.v84.17900 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
A synthetic data generation procedure for univariate circular data with various outliers scenarios using Python programming language
by: Nur Syahirah, Zulkipli, et al.
Published: (2021) -
A new single linkage robust clustering outlier detection procedures for multivariate data
by: Sharifah Sakinah Syed Abd Mutalib,, et al.
Published: (2023) -
A review on outliers-detection methods for multivariate data
by: Sharifah Sakinah, Syed Abd Mutalib, et al.
Published: (2021) -
Comparison of robust estimators for detecting outliers in multivariate datasets
by: Sharifah Sakinah, Syed Abd Mutalib, et al.
Published: (2021) -
A new robust estimator to detect outliers for multivariate data
by: Sharifah Sakinah, Syed Abd Mutalib, et al.
Published: (2019)