Lignin-based polybenzoxazine derived from empty fruit bunch fibers with good thermal and mechanical properties
In this study, a renewable phenolic component was synthesized using empty fruit bunch fibers via microwave-assisted liquefaction known as Liquefied Empty Fruit Bunch (LEFB). LEFB can be used as phenolic derivative to replace petroleum-based phenol as it contains aromatic group in lignin that can be...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English English |
Published: |
Trans Tech Publications, Switzerland
2020
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/30505/1/9.1%20Lignin-based%20polybenzoxazine%20derived%20from%20empty%20fruit%20bunch%20fibers.pdf http://umpir.ump.edu.my/id/eprint/30505/7/Lignin-based%20polybenzoxazine%20derived%20from%20empty%20fruit%20bunch%20fibers%20with%20good%20thermal%20and%20mechanical%20properties.pdf http://umpir.ump.edu.my/id/eprint/30505/ https://doi.org/10.4028/www.scientific.net/MSF.981.121 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a renewable phenolic component was synthesized using empty fruit bunch fibers via microwave-assisted liquefaction known as Liquefied Empty Fruit Bunch (LEFB). LEFB can be used as phenolic derivative to replace petroleum-based phenol as it contains aromatic group in lignin that can be used as starting materials to synthesis polybenzoxazine resins. A Lignin-based benzoxazine (L-PBz) has been synthesized using a solventless approach from the reaction of LEFB, furfurylamine as the amine component and paraformaldehyde via Mannich condensation reaction. Two different ratios of LEFB:furfurylamine:paraformaldehyde which are 1:1:1 and 1:1:2 were investigated. The thermal properties and polymerization behavior of the L-PBz were analyzed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. In addition, cured-polybenzoxazine composites were also prepared by hot-pressing the uncured L-PBz at 250 °C for 4 hours, and the mechanical properties of the composites were assessed through Izod impact strength test. TGA analysis showed that, L-PBz with ratio of 1:1:1 exhibit a high char yield compared to 1:1:2 which is 47% vs 43%, respectively, after being heated until 900 °C. However, L-PBz with ratio of 1:1:2 showed good polymerization behavior compared to 1:1:1 which indicated by the curing temperature 215 °C vs 238 °C. L-PBz composites, which added with cellulose nanocrystal (CNC) fillers have better strength compared with the absence of fillers. As a conclusion, the aromatic structure of lignin in empty fruit bunch fibers has presented a promising alternative to replace petroleum-based phenol in polybenzoxazine synthesis. |
---|