Simulation on effect of preform diameter in injection stretch blow molding
Polyethylene terephthalate (PET) is the most common material of resin for manufacturing plastic bottle by injection stretch blow molding due to its excellent properties. As various issues of health and environmental hazards due to the PET use have risen, PET bottle manufacture may be improved by min...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English English |
Published: |
Institute of Physics Publishing
2018
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/20477/1/Simulation%20on%20Effect%20of%20Preform%20Diameter%20in%20Injection%20Stretch%20Blow%20Molding%20via%20ANSYS%20Polyflow.pdf http://umpir.ump.edu.my/id/eprint/20477/7/Simulation%20on%20Effect%20of%20Preform%20Diameter%20in%20Injection%20Stretch%20Blow%20Molding%20via%20ANSYS%20Polyflow%201.pdf http://umpir.ump.edu.my/id/eprint/20477/ http://iopscience.iop.org/article/10.1088/1757-899X/319/1/012053/pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyethylene terephthalate (PET) is the most common material of resin for manufacturing plastic bottle by injection stretch blow molding due to its excellent properties. As various issues of health and environmental hazards due to the PET use have risen, PET bottle manufacture may be improved by minimizing the wall thickness to reduce the PET use. One of the critical qualifications of the manufacturing process which lead to the wall thickness distribution is the initial preform diameter. In this project, we used the ANSYS Polyflow with aim to evaluate the wall thickness distribution of PET bottle for different diameter of initial preform. As a result, only 4 mm preform diameter presented wall thickness below than 1 mm. On the other hand, at least 6 mm preform diameter can permit the wall thickness 1.3 mm i.e. at the shoulder area. |
---|