Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology
The interaction between incubation temperature, yeast extract concentration and inoculum size was investigated to optimize critical environmental parameters for production of biobutanol from oil palm frond (OPF) juice by Clostridium acetobutylicum ATCC 824 using response surface methodology (RSM). A...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
EDP Sciences
2017
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/18685/1/Statistical%20Optimization%20for%20Biobutanol%20Production%20by%20Clostridium%20acetobutylicum%20ATCC%20824%20from%20Oil%20Palm%20Frond%20%28OPF%29%20Juice%20Using%20Response%20Surface%20Methodology.pdf http://umpir.ump.edu.my/id/eprint/18685/ https://doi.org/10.1051/matecconf/201711103001 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.18685 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.186852018-03-07T01:52:35Z http://umpir.ump.edu.my/id/eprint/18685/ Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology Nur Syazana, Muhamad Nasrah Mior Ahmad Khushairi, Mohd Zahari N., Masngut Hidayah, Ariffin TP Chemical technology The interaction between incubation temperature, yeast extract concentration and inoculum size was investigated to optimize critical environmental parameters for production of biobutanol from oil palm frond (OPF) juice by Clostridium acetobutylicum ATCC 824 using response surface methodology (RSM). A central composite design (CCD) was applied as the experimental design and a polynomial regression model with quadratic term was used to analyse the experimental data using analysis of variance (ANOVA). ANOVA analysis showed that the model was very significant (p < 0.0001) for the biobutanol production. The incubation temperature, yeast extract concentration and inoculum size showed significant value at p < 0.005. The results of optimization process showed that a maximum biobutanol production was obtained under the condition of temperature 37 °C, yeast extract concentration 5.5 g/L and inoculum size 10%. Under these optimized conditions, the highest biobutanol yield was 0.3054 g/g after 144 hours of incubation period. The model was validated by applying the optimized conditions and 0.2992 g/g biobutanol yield was obtained. These experimental findings were in close agreement with the model prediction, with a difference of only 9.76%. EDP Sciences 2017 Conference or Workshop Item PeerReviewed application/pdf en cc_by http://umpir.ump.edu.my/id/eprint/18685/1/Statistical%20Optimization%20for%20Biobutanol%20Production%20by%20Clostridium%20acetobutylicum%20ATCC%20824%20from%20Oil%20Palm%20Frond%20%28OPF%29%20Juice%20Using%20Response%20Surface%20Methodology.pdf Nur Syazana, Muhamad Nasrah and Mior Ahmad Khushairi, Mohd Zahari and N., Masngut and Hidayah, Ariffin (2017) Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology. In: MATEC Web of Conferences: Fluids and Chemical Engineering Conference (FluidsChE 2017) , 4-6 April 2017 , Kota Kinabalu, Sabah, Malaysia. pp. 1-8., 111 (03001). ISSN 2261-236X https://doi.org/10.1051/matecconf/201711103001 DOI: 10.1051/matecconf/20171110 |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Nur Syazana, Muhamad Nasrah Mior Ahmad Khushairi, Mohd Zahari N., Masngut Hidayah, Ariffin Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology |
description |
The interaction between incubation temperature, yeast extract concentration and inoculum size was investigated to optimize critical environmental parameters for production of biobutanol from oil palm frond (OPF) juice by Clostridium acetobutylicum ATCC 824 using response surface methodology (RSM). A central composite design (CCD) was applied as the experimental design and a polynomial regression model with quadratic term was used to analyse the experimental data using analysis of variance (ANOVA). ANOVA analysis showed that the model was very significant (p < 0.0001) for the biobutanol production. The incubation temperature, yeast extract concentration and inoculum size showed significant value at p < 0.005. The results of optimization process showed that a maximum biobutanol production was obtained under the condition of temperature 37 °C, yeast extract concentration 5.5 g/L and inoculum size 10%. Under these optimized conditions, the highest biobutanol yield was 0.3054 g/g after 144 hours of incubation period. The model was validated by applying the optimized conditions and 0.2992 g/g biobutanol yield was obtained. These experimental findings were in close agreement with the model prediction, with a difference of only 9.76%. |
format |
Conference or Workshop Item |
author |
Nur Syazana, Muhamad Nasrah Mior Ahmad Khushairi, Mohd Zahari N., Masngut Hidayah, Ariffin |
author_facet |
Nur Syazana, Muhamad Nasrah Mior Ahmad Khushairi, Mohd Zahari N., Masngut Hidayah, Ariffin |
author_sort |
Nur Syazana, Muhamad Nasrah |
title |
Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology
|
title_short |
Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology
|
title_full |
Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology
|
title_fullStr |
Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology
|
title_full_unstemmed |
Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology
|
title_sort |
statistical optimization for biobutanol production by clostridium acetobutylicum atcc 824 from oil palm frond (opf) juice using response surface methodology |
publisher |
EDP Sciences |
publishDate |
2017 |
url |
http://umpir.ump.edu.my/id/eprint/18685/1/Statistical%20Optimization%20for%20Biobutanol%20Production%20by%20Clostridium%20acetobutylicum%20ATCC%20824%20from%20Oil%20Palm%20Frond%20%28OPF%29%20Juice%20Using%20Response%20Surface%20Methodology.pdf http://umpir.ump.edu.my/id/eprint/18685/ https://doi.org/10.1051/matecconf/201711103001 |
_version_ |
1643668509475995648 |
score |
13.211869 |