Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction
Poly(hydroxamic acid) ligand was synthesized using ester functionalities of cellulose-graft-poly(methyl acrylate) copolymer, and products are characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/16448/1/synthesis1.pdf http://umpir.ump.edu.my/id/eprint/16448/ http://dx.doi.org/10.1002/pat.3840 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.16448 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.164482019-09-10T02:28:42Z http://umpir.ump.edu.my/id/eprint/16448/ Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction Lutfor, M. R. Mandal, Bablu Hira Sarkar, Shaheen M. M. M., Yusoff Arshad, Sazmal Musta, Baba Q Science (General) Poly(hydroxamic acid) ligand was synthesized using ester functionalities of cellulose-graft-poly(methyl acrylate) copolymer, and products are characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. The poly(hydroxamic acid) ligand was utilized for the sensing and removal of transition metal ions form aqueous solutions. The solution pH is found a key factor for the optical detection of metal ions, and the reflectance spectra of the [Cu-ligand]n+ complex were observed to be the highest absorbance 99.5% at pH 6. With the increase of Cu2+ ion concentration, the reflectance spectra were increased, and a broad peak at 705 nm indicated that the charge transfer (π-π transition) complex was formed. The adsorption capacity with copper was found to be superior, 320 mg g−1, and adsorption capacities for other transition metal ions were also found to be good such as Fe3+, Mn2+, Co3+, Cr3+, Ni2+, and Zn2+ were 255, 260, 300, 280, 233, and 223 mg g−1, respectively, at pH 6. The experimental data show that all metal ions fitted well with the pseudo-second-order rate equation. The sorption results of the transition metal ions onto ligand were well fitted with Langmuir isotherm model (R2 > 0.98), which implies the homogenous and monolayer character of poly(hydroxamic acid) ligand surface. Eleven cycles sorption/desorption process were applied to verify the reusability of this adsorbent. The investigation of sorption and extraction efficiency in each cycle indicated that this new type of adsorbent can be recycled in many cycles with no significant loss in its original detection and removal capability. Wiley 2016-06-20 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/16448/1/synthesis1.pdf Lutfor, M. R. and Mandal, Bablu Hira and Sarkar, Shaheen M. and M. M., Yusoff and Arshad, Sazmal and Musta, Baba (2016) Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction. Polymers for Advanced Technologies, 27 (12). pp. 1625-1636. ISSN 1625-1636 http://dx.doi.org/10.1002/pat.3840 DOI: 10.1002/pat.3840 |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
Q Science (General) |
spellingShingle |
Q Science (General) Lutfor, M. R. Mandal, Bablu Hira Sarkar, Shaheen M. M. M., Yusoff Arshad, Sazmal Musta, Baba Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction |
description |
Poly(hydroxamic acid) ligand was synthesized using ester functionalities of cellulose-graft-poly(methyl acrylate) copolymer, and products are characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. The poly(hydroxamic acid) ligand was utilized for the sensing and removal of transition metal ions form aqueous solutions. The solution pH is found a key factor for the optical detection of metal ions, and the reflectance spectra of the [Cu-ligand]n+ complex were observed to be the highest absorbance 99.5% at pH 6. With the increase of Cu2+ ion concentration, the reflectance spectra were increased, and a broad peak at 705 nm indicated that the charge transfer (π-π transition) complex was formed. The adsorption capacity with copper was found to be superior, 320 mg g−1, and adsorption capacities for other transition metal ions were also found to be good such as Fe3+, Mn2+, Co3+, Cr3+, Ni2+, and Zn2+ were 255, 260, 300, 280, 233, and 223 mg g−1, respectively, at pH 6. The experimental data show that all metal ions fitted well with the pseudo-second-order rate equation. The sorption results of the transition metal ions onto ligand were well fitted with Langmuir isotherm model (R2 > 0.98), which implies the homogenous and monolayer character of poly(hydroxamic acid) ligand surface. Eleven cycles sorption/desorption process were applied to verify the reusability of this adsorbent. The investigation of sorption and extraction efficiency in each cycle indicated that this new type of adsorbent can be recycled in many cycles with no significant loss in its original detection and removal capability. |
format |
Article |
author |
Lutfor, M. R. Mandal, Bablu Hira Sarkar, Shaheen M. M. M., Yusoff Arshad, Sazmal Musta, Baba |
author_facet |
Lutfor, M. R. Mandal, Bablu Hira Sarkar, Shaheen M. M. M., Yusoff Arshad, Sazmal Musta, Baba |
author_sort |
Lutfor, M. R. |
title |
Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction |
title_short |
Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction |
title_full |
Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction |
title_fullStr |
Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction |
title_full_unstemmed |
Synthesis of Poly(hydroxamic acid) Ligand from Polymer Grafted Corn-cob Cellulose for Transition Metals Extraction |
title_sort |
synthesis of poly(hydroxamic acid) ligand from polymer grafted corn-cob cellulose for transition metals extraction |
publisher |
Wiley |
publishDate |
2016 |
url |
http://umpir.ump.edu.my/id/eprint/16448/1/synthesis1.pdf http://umpir.ump.edu.my/id/eprint/16448/ http://dx.doi.org/10.1002/pat.3840 |
_version_ |
1646017364911718400 |
score |
13.211869 |