A study of butanol production in a batch oscillatory baffled bioreactor

As with many bioprocesses, the acetone-butanol-ethanol (ABE) fermentation faces a number of economic drawbacks when compared to the petrochemical route for butanol production. In the 1920s biobutanol was the second largest biotechnology industry, after bioethanol production. However it became diffic...

Full description

Saved in:
Bibliographic Details
Main Author: N., Masngut
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/13515/1/NASRATUN%20MASNGUT.pdf
http://umpir.ump.edu.my/id/eprint/13515/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ump.umpir.13515
record_format eprints
spelling my.ump.umpir.135152021-08-19T05:07:25Z http://umpir.ump.edu.my/id/eprint/13515/ A study of butanol production in a batch oscillatory baffled bioreactor N., Masngut TP Chemical technology As with many bioprocesses, the acetone-butanol-ethanol (ABE) fermentation faces a number of economic drawbacks when compared to the petrochemical route for butanol production. In the 1920s biobutanol was the second largest biotechnology industry, after bioethanol production. However it became difficult to compete against the petrochemical route for reasons in cluding the low product butanol concentration, because of product inhibition resu lted in low butanol productivity and due to slow fermentation and low ABE yields. These lead to uneconomical butanol recovery by the conventional method, distillation, due to the high degree of dilution. Recent interest in biobutanol as a biofuel has led to re-examination of ABE fermentation with the aim of improving solvent yield, volumetric productivity and final solvent concentration to reduce the cost of production and thereby produce biobutanol that is cost-competitive with the chemical synthesis butanol. ABE fermentations were carried out in an intensified plug flow reactor known as the batch oscillatory baffled bioreactor (BOBB). The "BOBB"s were designed and built for this project. The effect of oscillatory flow mixing on ABE fermentation was compared to that of conventional stirred tank reactors (STRs) at power densities in the range 0 to 1.14 wm•3. The maximum butanol concentration in this range in a BOBB was 34% higher than the STR. Some increase in butanol productivity was also observed : 0.13 gL-1h•1 in BOBBs, compared to 0.11 gL-1h•1 in the STRs. It can be concluded that at similar power densities, BOBB fermentation shifts to solventogenesis earlier than in STRs, res ulting in higher solvent productivity. It is hypothesised that the reason for early solventogenesis in the BOBB was the higher so lvent-producing cell concentration, due to the more uniform shear field in the BOBB, so the cell would be less exposed to high shear thereby reducing the risk of cell lysis. Two-stage ABE fermentations in BOBB increased the butanol productivity by up to 37.5% over the one-stage fermentation. Butanol productivity was further increased by 97% when gas stripping was integrated to the two-stage ABE fermentation. While the one-stage fermentation integrated with gas stripping increased the butanol productivity by 69% to 0.12 gL-1h•1 {as opposed to 0.071 gl-1h-1 in a similar fermentation without gas stripping). A simple model to describe the one-stage at oscillatory Reynolds number (Re0 ) 0 and 938, and the two-stage ABE fermentation in BOBB II was developed. The model summarizes the physiologica l aspects of growth and metabolite synthesis by Clostridium GBL1082. The prediction of the models were in good agreement with experimental results incorporating mixing (Re0 938} and moderately agreed with results from Re0 0 and the two-stage fermentation. 2013 Thesis NonPeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/13515/1/NASRATUN%20MASNGUT.pdf N., Masngut (2013) A study of butanol production in a batch oscillatory baffled bioreactor. PhD thesis, Newcastle University.
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
N., Masngut
A study of butanol production in a batch oscillatory baffled bioreactor
description As with many bioprocesses, the acetone-butanol-ethanol (ABE) fermentation faces a number of economic drawbacks when compared to the petrochemical route for butanol production. In the 1920s biobutanol was the second largest biotechnology industry, after bioethanol production. However it became difficult to compete against the petrochemical route for reasons in cluding the low product butanol concentration, because of product inhibition resu lted in low butanol productivity and due to slow fermentation and low ABE yields. These lead to uneconomical butanol recovery by the conventional method, distillation, due to the high degree of dilution. Recent interest in biobutanol as a biofuel has led to re-examination of ABE fermentation with the aim of improving solvent yield, volumetric productivity and final solvent concentration to reduce the cost of production and thereby produce biobutanol that is cost-competitive with the chemical synthesis butanol. ABE fermentations were carried out in an intensified plug flow reactor known as the batch oscillatory baffled bioreactor (BOBB). The "BOBB"s were designed and built for this project. The effect of oscillatory flow mixing on ABE fermentation was compared to that of conventional stirred tank reactors (STRs) at power densities in the range 0 to 1.14 wm•3. The maximum butanol concentration in this range in a BOBB was 34% higher than the STR. Some increase in butanol productivity was also observed : 0.13 gL-1h•1 in BOBBs, compared to 0.11 gL-1h•1 in the STRs. It can be concluded that at similar power densities, BOBB fermentation shifts to solventogenesis earlier than in STRs, res ulting in higher solvent productivity. It is hypothesised that the reason for early solventogenesis in the BOBB was the higher so lvent-producing cell concentration, due to the more uniform shear field in the BOBB, so the cell would be less exposed to high shear thereby reducing the risk of cell lysis. Two-stage ABE fermentations in BOBB increased the butanol productivity by up to 37.5% over the one-stage fermentation. Butanol productivity was further increased by 97% when gas stripping was integrated to the two-stage ABE fermentation. While the one-stage fermentation integrated with gas stripping increased the butanol productivity by 69% to 0.12 gL-1h•1 {as opposed to 0.071 gl-1h-1 in a similar fermentation without gas stripping). A simple model to describe the one-stage at oscillatory Reynolds number (Re0 ) 0 and 938, and the two-stage ABE fermentation in BOBB II was developed. The model summarizes the physiologica l aspects of growth and metabolite synthesis by Clostridium GBL1082. The prediction of the models were in good agreement with experimental results incorporating mixing (Re0 938} and moderately agreed with results from Re0 0 and the two-stage fermentation.
format Thesis
author N., Masngut
author_facet N., Masngut
author_sort N., Masngut
title A study of butanol production in a batch oscillatory baffled bioreactor
title_short A study of butanol production in a batch oscillatory baffled bioreactor
title_full A study of butanol production in a batch oscillatory baffled bioreactor
title_fullStr A study of butanol production in a batch oscillatory baffled bioreactor
title_full_unstemmed A study of butanol production in a batch oscillatory baffled bioreactor
title_sort study of butanol production in a batch oscillatory baffled bioreactor
publishDate 2013
url http://umpir.ump.edu.my/id/eprint/13515/1/NASRATUN%20MASNGUT.pdf
http://umpir.ump.edu.my/id/eprint/13515/
_version_ 1709667635347587072
score 13.211869