A Gompertzian Model With Random Effects To Cervical Cancer Growth

In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge- Kutta (SRK4) for solving the stochastic model numerically. The efficie...

詳細記述

保存先:
書誌詳細
主要な著者: Mazma Syahidatul Ayuni, Mazlan, Norhayati, Rosli
フォーマット: Conference or Workshop Item
言語:English
出版事項: AIP Publishing 2015
主題:
オンライン・アクセス:http://umpir.ump.edu.my/id/eprint/13506/7/A%20Gompertzian%20model%20with%20random%20effects%20to%20cervical%20cancer%20growth1.pdf
http://umpir.ump.edu.my/id/eprint/13506/
http://dx.doi.org/10.1063/1.4915641
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
id my.ump.umpir.13506
record_format eprints
spelling my.ump.umpir.135062018-09-05T04:22:48Z http://umpir.ump.edu.my/id/eprint/13506/ A Gompertzian Model With Random Effects To Cervical Cancer Growth Mazma Syahidatul Ayuni, Mazlan Norhayati, Rosli Q Science (General) QA Mathematics In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge- Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits. AIP Publishing 2015 Conference or Workshop Item PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/13506/7/A%20Gompertzian%20model%20with%20random%20effects%20to%20cervical%20cancer%20growth1.pdf Mazma Syahidatul Ayuni, Mazlan and Norhayati, Rosli (2015) A Gompertzian Model With Random Effects To Cervical Cancer Growth. In: AIP Conference Proceedings: International Conference on Mathematics, Engineering and Industrial Applications (ICoMEIA 2014), 28-30 May 2014 , Penang, Malaysia. pp. 1-7., 1660 (050008). ISSN 0094-243X ISBN 978-0-7354-1304-7 http://dx.doi.org/10.1063/1.4915641
institution Universiti Malaysia Pahang Al-Sultan Abdullah
building UMPSA Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang Al-Sultan Abdullah
content_source UMPSA Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic Q Science (General)
QA Mathematics
spellingShingle Q Science (General)
QA Mathematics
Mazma Syahidatul Ayuni, Mazlan
Norhayati, Rosli
A Gompertzian Model With Random Effects To Cervical Cancer Growth
description In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge- Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.
format Conference or Workshop Item
author Mazma Syahidatul Ayuni, Mazlan
Norhayati, Rosli
author_facet Mazma Syahidatul Ayuni, Mazlan
Norhayati, Rosli
author_sort Mazma Syahidatul Ayuni, Mazlan
title A Gompertzian Model With Random Effects To Cervical Cancer Growth
title_short A Gompertzian Model With Random Effects To Cervical Cancer Growth
title_full A Gompertzian Model With Random Effects To Cervical Cancer Growth
title_fullStr A Gompertzian Model With Random Effects To Cervical Cancer Growth
title_full_unstemmed A Gompertzian Model With Random Effects To Cervical Cancer Growth
title_sort gompertzian model with random effects to cervical cancer growth
publisher AIP Publishing
publishDate 2015
url http://umpir.ump.edu.my/id/eprint/13506/7/A%20Gompertzian%20model%20with%20random%20effects%20to%20cervical%20cancer%20growth1.pdf
http://umpir.ump.edu.my/id/eprint/13506/
http://dx.doi.org/10.1063/1.4915641
_version_ 1822917596775710720
score 13.251813