Performance analysis of convolutional neural networks extended with predefined kernels in image classification / Arash Fatehi
While Machine Learning aims to solve more challenging problems, Artificial Neural Networks (ANN) become deeper and more accurate. Convolutional Neural Network (CNN) is not an exception and state-of-art architectures consist of millions of learnable parameters. Aiming for better performance, these ne...
保存先:
第一著者: | Arash , Fatehi |
---|---|
フォーマット: | 学位論文 |
出版事項: |
2022
|
主題: | |
オンライン・アクセス: | http://studentsrepo.um.edu.my/14682/1/Arash_Fatehi.pdf http://studentsrepo.um.edu.my/14682/2/Arash_Fatehi.pdf http://studentsrepo.um.edu.my/14682/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Predefined Object Reduction
著者:: Mohammed, Mohammed Adam Taheir, 等
出版事項: (2013) -
Utilising VGG-16 of convolutional neural network for medical image classification
著者:: Ismail, Amelia Ritahani, 等
出版事項: (2024) -
A comparative performance of different convolutional
neural network activation functions on image classification
著者:: Azhary, Muhammad Zulhazmi Rafiqi, 等
出版事項: (2024) -
Convolutional neural network long short-term memory (CNN + LSTM) for histopathology cancer image classification
著者:: Zainudin, Zanariah, 等
出版事項: (2020) -
Development of hybrid convolutional neural network and autoregressive integrated moving average on computed tomography image classification
著者:: Abdulrazak Yahya, Saleh, 等
出版事項: (2023)