Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation
Tackling water scarcity is a pressing challenge, propelling recent advancements in solar steam generation (SSG). Recently, 3D photoabsorbers have outperformed their 2D counterparts in recovering light and minimizing heat losses, enabling a surge in exploring 3D materials and designs. Herein, 3D stru...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Published: |
Wiley-V C H Verlag GMBH
2024
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/45736/ https://doi.org/10.1002/solr.202301015 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.45736 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.457362024-11-11T04:07:52Z http://eprints.um.edu.my/45736/ Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation Lim, Kok-Loong Liow, Jo-Ey Ong, Wee-Jun Khiew, Poi Sim Jani, Nur Aimi Chiu, Wee Siong Tan, Swee-Tiam Haw, Choon-Yian Q Science (General) QC Physics TP Chemical technology Tackling water scarcity is a pressing challenge, propelling recent advancements in solar steam generation (SSG). Recently, 3D photoabsorbers have outperformed their 2D counterparts in recovering light and minimizing heat losses, enabling a surge in exploring 3D materials and designs. Herein, 3D structures are fabricated using polydopamine (PDA) functionalized carbonized palm fibers (PDA c-fiber) to shed light on the degree of improvement in SSG efficiency compared to their 2D counterpart. Specifically, two 3D models, a cone, and a cylindrical cup, are chosen for their inherent features, including a hollow cavity, circular base, and curved surface. These architectural elements play a crucial role in trapping light, facilitating reflections, and efficiently converting solar energy to heat through the photothermal effect. Scaling palm fibers from 2D to 3D significantly boosts SSG efficiency, from 67.9% to 103.7%, with water evaporation rate enhanced from 1.171 kg m-2 h-1 to 1.869 kg m-2 h-1. Substantially, the 3D cup demonstrates superior photothermal performance primarily attributed to its heat recovery feature of the cup wall structure and circular basal area, enabling prolonged light-to-heat conversion. These findings provide valuable insights and foundation for developing efficient solar-driven 3D upcycled photoabsorbers in the future. This work highlights the 3D design and the flexibility of carbonized fiber material as photoabsorber while unveiling the important energy recovery mechanism that constitutes highly efficient solar steam generation (SSG). SSG performance of 2D, 3D cone, and 3D cup shape photoabsorber were compared to probe the energy recovery effectiveness of their respective properties.image (c) 2024 WILEY-VCH GmbH Wiley-V C H Verlag GMBH 2024-04 Article PeerReviewed Lim, Kok-Loong and Liow, Jo-Ey and Ong, Wee-Jun and Khiew, Poi Sim and Jani, Nur Aimi and Chiu, Wee Siong and Tan, Swee-Tiam and Haw, Choon-Yian (2024) Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation. Solar RRL, 8 (8). ISSN 2367-198X, DOI https://doi.org/10.1002/solr.202301015 <https://doi.org/10.1002/solr.202301015>. https://doi.org/10.1002/solr.202301015 10.1002/solr.202301015 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
Q Science (General) QC Physics TP Chemical technology |
spellingShingle |
Q Science (General) QC Physics TP Chemical technology Lim, Kok-Loong Liow, Jo-Ey Ong, Wee-Jun Khiew, Poi Sim Jani, Nur Aimi Chiu, Wee Siong Tan, Swee-Tiam Haw, Choon-Yian Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation |
description |
Tackling water scarcity is a pressing challenge, propelling recent advancements in solar steam generation (SSG). Recently, 3D photoabsorbers have outperformed their 2D counterparts in recovering light and minimizing heat losses, enabling a surge in exploring 3D materials and designs. Herein, 3D structures are fabricated using polydopamine (PDA) functionalized carbonized palm fibers (PDA c-fiber) to shed light on the degree of improvement in SSG efficiency compared to their 2D counterpart. Specifically, two 3D models, a cone, and a cylindrical cup, are chosen for their inherent features, including a hollow cavity, circular base, and curved surface. These architectural elements play a crucial role in trapping light, facilitating reflections, and efficiently converting solar energy to heat through the photothermal effect. Scaling palm fibers from 2D to 3D significantly boosts SSG efficiency, from 67.9% to 103.7%, with water evaporation rate enhanced from 1.171 kg m-2 h-1 to 1.869 kg m-2 h-1. Substantially, the 3D cup demonstrates superior photothermal performance primarily attributed to its heat recovery feature of the cup wall structure and circular basal area, enabling prolonged light-to-heat conversion. These findings provide valuable insights and foundation for developing efficient solar-driven 3D upcycled photoabsorbers in the future. This work highlights the 3D design and the flexibility of carbonized fiber material as photoabsorber while unveiling the important energy recovery mechanism that constitutes highly efficient solar steam generation (SSG). SSG performance of 2D, 3D cone, and 3D cup shape photoabsorber were compared to probe the energy recovery effectiveness of their respective properties.image (c) 2024 WILEY-VCH GmbH |
format |
Article |
author |
Lim, Kok-Loong Liow, Jo-Ey Ong, Wee-Jun Khiew, Poi Sim Jani, Nur Aimi Chiu, Wee Siong Tan, Swee-Tiam Haw, Choon-Yian |
author_facet |
Lim, Kok-Loong Liow, Jo-Ey Ong, Wee-Jun Khiew, Poi Sim Jani, Nur Aimi Chiu, Wee Siong Tan, Swee-Tiam Haw, Choon-Yian |
author_sort |
Lim, Kok-Loong |
title |
Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation |
title_short |
Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation |
title_full |
Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation |
title_fullStr |
Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation |
title_full_unstemmed |
Augmenting Light-to-Heat Conversion Through 3D Scalable Palm Fiber for Energy Efficient Photothermal Solar Steam Generation |
title_sort |
augmenting light-to-heat conversion through 3d scalable palm fiber for energy efficient photothermal solar steam generation |
publisher |
Wiley-V C H Verlag GMBH |
publishDate |
2024 |
url |
http://eprints.um.edu.my/45736/ https://doi.org/10.1002/solr.202301015 |
_version_ |
1816130451834667008 |
score |
13.22586 |