Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer

In industrial and engineering fields including lamination, melt-spinning, continuous casting, and fiber spinning, the flow caused by a continually moving surface is significant. Therefore, the problem of ternary hybrid nanofluid flow over a moving surface is studied. This study explores the stabilit...

Full description

Saved in:
Bibliographic Details
Main Authors: Rehman, Aqeel ur, Abbas, Zaheer, Hussain, Zawar, Hasnain, Jafar, Asma, Mir
Format: Article
Published: Institute of Physics 2024
Subjects:
Online Access:http://eprints.um.edu.my/45142/
https://doi.org/10.1088/1361-6528/ad373d
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.45142
record_format eprints
spelling my.um.eprints.451422024-09-19T07:37:19Z http://eprints.um.edu.my/45142/ Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer Rehman, Aqeel ur Abbas, Zaheer Hussain, Zawar Hasnain, Jafar Asma, Mir Q Science (General) QC Physics T Technology (General) In industrial and engineering fields including lamination, melt-spinning, continuous casting, and fiber spinning, the flow caused by a continually moving surface is significant. Therefore, the problem of ternary hybrid nanofluid flow over a moving surface is studied. This study explores the stability and statistical analyses of the magnetohydrodynamics (MHD) forced flow of the ternary hybrid nanofluid with melting heat transfer phenomena. The impacts of viscous dissipation, Joule heating, and thermal radiation are also included in the flow. Different fluids including ternary hybrid nanofluid, hybrid nanofluids, and nanofluids with base fluid ethylene glycol (EG) are examined and compared, where magnetite (Fe3O4) and silica (SiO2) are taken as the magnetic nanomaterials while silver (Ag) is chosen as the nonmagnetic nanomaterial. The skin friction coefficient and the local Nusselt number are estimated through regression analysis. By employing similarity transformations, the governing partial differential equations are converted into non-linear ordinary differential equations. Then, the least square method is applied to solve the equations analytically. Dual solutions are established in a particular range of moving parameter lambda. Due to this, a stability test is implemented to find the stable solution by using the bvp4c function in MATLAB software. It is found that the first solution is the stable one while the second is unstable. The use of ternary hybrid nanomaterials improves the heat transport rate. The increasing values of the Eckert number enlarge the heat passage. The fluid velocity and temperature profiles for nonmagnetic nanomaterials are higher than that of magnetic nanomaterials. The uniqueness and originality of this study stems from the fact that, to the best of the authors' knowledge, it is the first to use this combination technique. Institute of Physics 2024-06 Article PeerReviewed Rehman, Aqeel ur and Abbas, Zaheer and Hussain, Zawar and Hasnain, Jafar and Asma, Mir (2024) Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer. Nanotechnology, 35 (26). p. 265401. ISSN 0957-4484, DOI https://doi.org/10.1088/1361-6528/ad373d <https://doi.org/10.1088/1361-6528/ad373d>. https://doi.org/10.1088/1361-6528/ad373d 10.1088/1361-6528/ad373d
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic Q Science (General)
QC Physics
T Technology (General)
spellingShingle Q Science (General)
QC Physics
T Technology (General)
Rehman, Aqeel ur
Abbas, Zaheer
Hussain, Zawar
Hasnain, Jafar
Asma, Mir
Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer
description In industrial and engineering fields including lamination, melt-spinning, continuous casting, and fiber spinning, the flow caused by a continually moving surface is significant. Therefore, the problem of ternary hybrid nanofluid flow over a moving surface is studied. This study explores the stability and statistical analyses of the magnetohydrodynamics (MHD) forced flow of the ternary hybrid nanofluid with melting heat transfer phenomena. The impacts of viscous dissipation, Joule heating, and thermal radiation are also included in the flow. Different fluids including ternary hybrid nanofluid, hybrid nanofluids, and nanofluids with base fluid ethylene glycol (EG) are examined and compared, where magnetite (Fe3O4) and silica (SiO2) are taken as the magnetic nanomaterials while silver (Ag) is chosen as the nonmagnetic nanomaterial. The skin friction coefficient and the local Nusselt number are estimated through regression analysis. By employing similarity transformations, the governing partial differential equations are converted into non-linear ordinary differential equations. Then, the least square method is applied to solve the equations analytically. Dual solutions are established in a particular range of moving parameter lambda. Due to this, a stability test is implemented to find the stable solution by using the bvp4c function in MATLAB software. It is found that the first solution is the stable one while the second is unstable. The use of ternary hybrid nanomaterials improves the heat transport rate. The increasing values of the Eckert number enlarge the heat passage. The fluid velocity and temperature profiles for nonmagnetic nanomaterials are higher than that of magnetic nanomaterials. The uniqueness and originality of this study stems from the fact that, to the best of the authors' knowledge, it is the first to use this combination technique.
format Article
author Rehman, Aqeel ur
Abbas, Zaheer
Hussain, Zawar
Hasnain, Jafar
Asma, Mir
author_facet Rehman, Aqeel ur
Abbas, Zaheer
Hussain, Zawar
Hasnain, Jafar
Asma, Mir
author_sort Rehman, Aqeel ur
title Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer
title_short Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer
title_full Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer
title_fullStr Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer
title_full_unstemmed Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer
title_sort integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer
publisher Institute of Physics
publishDate 2024
url http://eprints.um.edu.my/45142/
https://doi.org/10.1088/1361-6528/ad373d
_version_ 1811682093108822016
score 13.211869