Control of electrical and calcium alternans in a one-dimensional cardiac cable
Cardiac alternans is a beat-to-beat alternation in the electrical properties of the heart, such as membrane potential and intracellular calcium (Ca) cycling in myocytes. Due to the bi-directional coupling between voltage and calcium, it is not easy to decide which mechanism drives the alternans and...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Springer Science and Business Media Deutschland GmbH
2024
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/44997/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.44997 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.449972024-04-16T02:31:26Z http://eprints.um.edu.my/44997/ Control of electrical and calcium alternans in a one-dimensional cardiac cable Keong, Jin Lan, Boon Leong Lim, Einly Le, Duy-Manh Liang, Shiuan-Ni R Medicine T Technology (General) TA Engineering (General). Civil engineering (General) Cardiac alternans is a beat-to-beat alternation in the electrical properties of the heart, such as membrane potential and intracellular calcium (Ca) cycling in myocytes. Due to the bi-directional coupling between voltage and calcium, it is not easy to decide which mechanism drives the alternans and thus, affect the effectiveness of controlling alternans. In this study, the control of cardiac alternans in a one-dimensional short cable was investigated numerically using the T± ϵ feedback control, where T is the basic cycle length and ϵ is a pre-set control parameter. The effectiveness of controlling alternans between action potential duration (APD) and peak value of intracellular calcium concentration (peak-Ca) being used as the feedback control variables were compared. Results showed that the effectiveness of APD-based and Ca-based feedback controls were the same when ϵ was less than the critical value (ϵc ), however, the APD-based control performed better than the Ca-based feedback control when ϵ> ϵc. This study may improve the understanding of which method is a better feedback control and lead to the development of a better alternans control scheme. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. Springer Science and Business Media Deutschland GmbH 2024 Article PeerReviewed Keong, Jin and Lan, Boon Leong and Lim, Einly and Le, Duy-Manh and Liang, Shiuan-Ni (2024) Control of electrical and calcium alternans in a one-dimensional cardiac cable. Communications in Computer and Information Science, 1912 C. 441 – 451. ISSN 1865-0929, DOI https://doi.org/10.1007/978-981-99-7243-2_36 <https://doi.org/10.1007/978-981-99-7243-2_36>. 10.1007/978-981-99-7243-2_36 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
R Medicine T Technology (General) TA Engineering (General). Civil engineering (General) |
spellingShingle |
R Medicine T Technology (General) TA Engineering (General). Civil engineering (General) Keong, Jin Lan, Boon Leong Lim, Einly Le, Duy-Manh Liang, Shiuan-Ni Control of electrical and calcium alternans in a one-dimensional cardiac cable |
description |
Cardiac alternans is a beat-to-beat alternation in the electrical properties of the heart, such as membrane potential and intracellular calcium (Ca) cycling in myocytes. Due to the bi-directional coupling between voltage and calcium, it is not easy to decide which mechanism drives the alternans and thus, affect the effectiveness of controlling alternans. In this study, the control of cardiac alternans in a one-dimensional short cable was investigated numerically using the T± ϵ feedback control, where T is the basic cycle length and ϵ is a pre-set control parameter. The effectiveness of controlling alternans between action potential duration (APD) and peak value of intracellular calcium concentration (peak-Ca) being used as the feedback control variables were compared. Results showed that the effectiveness of APD-based and Ca-based feedback controls were the same when ϵ was less than the critical value (ϵc ), however, the APD-based control performed better than the Ca-based feedback control when ϵ> ϵc. This study may improve the understanding of which method is a better feedback control and lead to the development of a better alternans control scheme. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. |
format |
Article |
author |
Keong, Jin Lan, Boon Leong Lim, Einly Le, Duy-Manh Liang, Shiuan-Ni |
author_facet |
Keong, Jin Lan, Boon Leong Lim, Einly Le, Duy-Manh Liang, Shiuan-Ni |
author_sort |
Keong, Jin |
title |
Control of electrical and calcium alternans in a one-dimensional cardiac cable |
title_short |
Control of electrical and calcium alternans in a one-dimensional cardiac cable |
title_full |
Control of electrical and calcium alternans in a one-dimensional cardiac cable |
title_fullStr |
Control of electrical and calcium alternans in a one-dimensional cardiac cable |
title_full_unstemmed |
Control of electrical and calcium alternans in a one-dimensional cardiac cable |
title_sort |
control of electrical and calcium alternans in a one-dimensional cardiac cable |
publisher |
Springer Science and Business Media Deutschland GmbH |
publishDate |
2024 |
url |
http://eprints.um.edu.my/44997/ |
_version_ |
1797906867051036672 |
score |
13.211869 |