Kretschmann-based plasmonic excitation of 2D organic semiconductor at visible wavelengths
We studied the Kretschmann-based surface plasmon resonance (K-SPR) of two-dimensional organic semiconductor materials, namely manganese (III) phthalocyanine chloride (MnPcCl) and vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO). The K-SPR measurements indicate that VOPcPhO exhibits su...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2024
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/44742/ https://doi.org/10.1016/j.matlet.2023.135687 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We studied the Kretschmann-based surface plasmon resonance (K-SPR) of two-dimensional organic semiconductor materials, namely manganese (III) phthalocyanine chloride (MnPcCl) and vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO). The K-SPR measurements indicate that VOPcPhO exhibits superior performance compared to MnPcCl, as evidenced by the stronger absorption and narrower SPR peaks. Oxygen-vanadium coupling in the central metal atom facilitates high absorption, potentially enabling strong plasmon-exciton coupling, which can be harnessed for efficient photovoltaic and optical memory devices. © 2023 Elsevier B.V. |
---|