Ti2C MXene for multi-wavelength enhancement in S-band Q-switched thulium doped fluoride fiber laser
A titanium carbide (Ti2C)-based saturable absorber was demonstrated in a compact thulium-doped fluoride fiber laser (TDFFL) configured to generate stable microsecond pulses in single-and multiwavelength operations. An in line Mach-Zehnder interferometer (MZI) based on a two-mode fiber was incorporat...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Published: |
Elsevier Science Inc
2022
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/43083/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A titanium carbide (Ti2C)-based saturable absorber was demonstrated in a compact thulium-doped fluoride fiber laser (TDFFL) configured to generate stable microsecond pulses in single-and multiwavelength operations. An in line Mach-Zehnder interferometer (MZI) based on a two-mode fiber was incorporated into the laser cavity to generate a birefringent effect that has a fixed free spectral range (FSR) and an extinction ratio (ER) of 0.83 nm and 6.17 dB, respectively. At the maximum pump power of 250 mW, the TDFFL generated single-wavelength Q- switched pulses with a maximum frequency of 35.20 kHz, a pulse width of 3.30 mu s, and pulse energy of 2.55 nJ, respectively. In the multiwavelength Q-switching operation, the laser-generated pulses have a frequency, pulse width, and pulse energy of 27.02 kHz, 3.17 mu s, and 1.79 nJ, respectively. The proposed single-and multi wavelength Q-switched fiber lasers were stable and compact, making them suitable for industrial applications. |
---|