On certain sum involving quadratic residue

Let p be a prime and F-p be the set of integers modulo p. Let chi(p) be a function defined on F-p such that chi(p)(0) = 0 and for a is an element of F-p\textbackslash{0}, set chi(p)(a) = 1 if a is a quadratic residue modulo p and chi(p)(a)= -1 if a is a quadratic non-residue modulo p. Note that chi(...

詳細記述

保存先:
書誌詳細
主要な著者: Sim, Kai An, Wong, Kok Bin
フォーマット: 論文
出版事項: MDPI 2022
主題:
オンライン・アクセス:http://eprints.um.edu.my/41968/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Let p be a prime and F-p be the set of integers modulo p. Let chi(p) be a function defined on F-p such that chi(p)(0) = 0 and for a is an element of F-p\textbackslash{0}, set chi(p)(a) = 1 if a is a quadratic residue modulo p and chi(p)(a)= -1 if a is a quadratic non-residue modulo p. Note that chi(p)(a)=(a/p) is indeed the Legendre symbol. The image of chi(p) in the set of real numbers. In this paper, we consider the following sum Sigma(x is an element of Fp)chi(p)((x-a(1))(x-a(2))...(x-a(t))) where a(1),a(2), ...,a(t) are distinct elements in F-p.