Rainfall prediction using multiple inclusive models and large climate indices
Rainfall prediction is vital for the management of available water resources. Accordingly, this study used large lagged climate indices to predict rainfall in Iran's Sefidrood basin. A radial basis function neural network (RBFNN) and a multilayer perceptron (MLP) network were used to predict mo...
محفوظ في:
المؤلفون الرئيسيون: | Mohamadi, Sedigheh, Khozani, Zohreh Sheikh, Ehteram, Mohammad, Ahmed, Ali Najah, El-Shafie, Ahmed |
---|---|
التنسيق: | مقال |
منشور في: |
Springer
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.um.edu.my/40953/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Rainfall prediction using multiple inclusive models and large climate indices
بواسطة: Mohamadi S., وآخرون
منشور في: (2023) -
Streamflow prediction with large climate indices using several hybrid multilayer perceptrons and copula Bayesian model averaging
بواسطة: Panahi, Fatemeh, وآخرون
منشور في: (2021) -
An advanced deep learning model for predicting water quality index
بواسطة: Ehteram, Mohammad, وآخرون
منشور في: (2024) -
Graph convolutional network-Long short term memory neural network- multi layer perceptron- Gaussian progress regression model: A new deep learning model for predicting ozone concertation
بواسطة: Ehteram, Mohammad, وآخرون
منشور في: (2023) -
Inclusive multiple model using hybrid artificial neural networks for predicting evaporation
بواسطة: Ehteram, Mohammad, وآخرون
منشور في: (2022)