Hydrogen energy of mining waste waters: Extraction and analysis of solving issues
Billions liters of wastewater are created every day from industrial and domestic locations, and while wastewater is frequently regarded as a concern, it includes the potential to be regarded as a rich supply of energy and materials. The creation of hydrogen gas by electrolysis utilizing a solar syst...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2023
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/39461/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.39461 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.394612023-11-27T01:01:53Z http://eprints.um.edu.my/39461/ Hydrogen energy of mining waste waters: Extraction and analysis of solving issues Sui, Yang AL-Huqail, Arwa Abdulkreem Suhatril, Meldi Abed, Azher M. Zhao, Yinghao Assilzadeh, Hamid Khadimallah, Mohamed Amine Ali, H. Elhosiny TP Chemical technology Billions liters of wastewater are created every day from industrial and domestic locations, and while wastewater is frequently regarded as a concern, it includes the potential to be regarded as a rich supply of energy and materials. The creation of hydrogen gas by electrolysis utilizing a solar system is an alternate method for treating this residual water. Wastewater has four to five times the energy necessary to its treatment and a good source of bio-hydrogen as a feedstock chemical, clean energy vector, and a fuel generally acknowledged to play a part in the energy system's decarburization. The goal of this research was to see how well wastewater might be used to produce anaerobic hydrogen. Synthetic wastewater with high- and ordinary strength organic loadings as real-time residential wastewater with(out) a combination of food waste was examined. Hydrogen generation during sewage sludge and mining residue suspensions coupled was measured using electro dialytic methods at 50 and 100 mA. Hydrogen purity has been reached at 33 % along the electro dialytic treat of sewage sludge. Hydrogen purity reached 71 percent and 34 percent, respectively, while adding sewage sludge or effluent as enhancers in waste solutions. The maximum extraction ratios of phosphorus (71 %) and tungsten (62 %), respectively, were obtained while the technique has been performed to waste suspensions mixed with sewage sludge. This study's findings could be used to develop onsite household energy and wastewater recovery systems. Elsevier 2023-01 Article PeerReviewed Sui, Yang and AL-Huqail, Arwa Abdulkreem and Suhatril, Meldi and Abed, Azher M. and Zhao, Yinghao and Assilzadeh, Hamid and Khadimallah, Mohamed Amine and Ali, H. Elhosiny (2023) Hydrogen energy of mining waste waters: Extraction and analysis of solving issues. Fuel, 331 (1). ISSN 0016-2361, DOI https://doi.org/10.1016/j.fuel.2022.125685 <https://doi.org/10.1016/j.fuel.2022.125685>. 10.1016/j.fuel.2022.125685 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
TP Chemical technology |
spellingShingle |
TP Chemical technology Sui, Yang AL-Huqail, Arwa Abdulkreem Suhatril, Meldi Abed, Azher M. Zhao, Yinghao Assilzadeh, Hamid Khadimallah, Mohamed Amine Ali, H. Elhosiny Hydrogen energy of mining waste waters: Extraction and analysis of solving issues |
description |
Billions liters of wastewater are created every day from industrial and domestic locations, and while wastewater is frequently regarded as a concern, it includes the potential to be regarded as a rich supply of energy and materials. The creation of hydrogen gas by electrolysis utilizing a solar system is an alternate method for treating this residual water. Wastewater has four to five times the energy necessary to its treatment and a good source of bio-hydrogen as a feedstock chemical, clean energy vector, and a fuel generally acknowledged to play a part in the energy system's decarburization. The goal of this research was to see how well wastewater might be used to produce anaerobic hydrogen. Synthetic wastewater with high- and ordinary strength organic loadings as real-time residential wastewater with(out) a combination of food waste was examined. Hydrogen generation during sewage sludge and mining residue suspensions coupled was measured using electro dialytic methods at 50 and 100 mA. Hydrogen purity has been reached at 33 % along the electro dialytic treat of sewage sludge. Hydrogen purity reached 71 percent and 34 percent, respectively, while adding sewage sludge or effluent as enhancers in waste solutions. The maximum extraction ratios of phosphorus (71 %) and tungsten (62 %), respectively, were obtained while the technique has been performed to waste suspensions mixed with sewage sludge. This study's findings could be used to develop onsite household energy and wastewater recovery systems. |
format |
Article |
author |
Sui, Yang AL-Huqail, Arwa Abdulkreem Suhatril, Meldi Abed, Azher M. Zhao, Yinghao Assilzadeh, Hamid Khadimallah, Mohamed Amine Ali, H. Elhosiny |
author_facet |
Sui, Yang AL-Huqail, Arwa Abdulkreem Suhatril, Meldi Abed, Azher M. Zhao, Yinghao Assilzadeh, Hamid Khadimallah, Mohamed Amine Ali, H. Elhosiny |
author_sort |
Sui, Yang |
title |
Hydrogen energy of mining waste waters: Extraction and analysis of solving issues |
title_short |
Hydrogen energy of mining waste waters: Extraction and analysis of solving issues |
title_full |
Hydrogen energy of mining waste waters: Extraction and analysis of solving issues |
title_fullStr |
Hydrogen energy of mining waste waters: Extraction and analysis of solving issues |
title_full_unstemmed |
Hydrogen energy of mining waste waters: Extraction and analysis of solving issues |
title_sort |
hydrogen energy of mining waste waters: extraction and analysis of solving issues |
publisher |
Elsevier |
publishDate |
2023 |
url |
http://eprints.um.edu.my/39461/ |
_version_ |
1783876690867388416 |
score |
13.211869 |