Multistage switched adaptive filtering approach for denoising speech signals of Parkinson's Disease-affected patients
Recording the speech signals of Parkinson's Disease (PD)-affected patients is challenging due to the surrounding noise. Therefore there is a need to denoise the signals. This paper proposes an Adaptive Noise Canceller-based model for signal denoising. This paper introduces an optimal adaptive f...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Springer Birkhauser
2023
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/39376/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recording the speech signals of Parkinson's Disease (PD)-affected patients is challenging due to the surrounding noise. Therefore there is a need to denoise the signals. This paper proposes an Adaptive Noise Canceller-based model for signal denoising. This paper introduces an optimal adaptive filter structure using a signed LMS algorithm to compute the best estimate of a clean signal. A noise-corrupted signal is sent across multiple adaptive filters connected in series. Multiple stages are added automatically, and the filtering algorithm for each stage is also adjusted automatically. The proposed multi-stage switched adaptive filter model is tested for reducing the noise from a speech signal recorded from Parkinson's Disease-affected patients and corrupted by Gaussian signals of different input SNR levels. The simulation results prove that the proposed filter model performs remarkably well and provides 20-30 dB higher SNR values than the existing cascaded LMS filter models. The MSE value is improved by 85-97%, and the PSNR values are increased by 7 dB. Using the Sign LMS algorithm in the proposed filter model offers a cost-effective hardware implementation of Adaptive Noise Canceller with high accuracy. |
---|