A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications
Due to its various advantages, colloidal quantum dots (CQDs) carry a prodigious deal of interest in low-cost photovoltaics. The possibility of tailored band gaps via quantum confinement effect facilitates photovoltaic devices to be tuned to allow their optical absorption bandwidths to match with the...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Bentham Science Publishers
2020
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/37127/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.37127 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.371272023-05-29T02:54:47Z http://eprints.um.edu.my/37127/ A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications Najeeb, Mansoor Ani Ahmad, Zubair Balamurugan, Sarkarainadar Sulaiman, Khaulah Shakoor, R. A. QD Chemistry T Technology (General) Due to its various advantages, colloidal quantum dots (CQDs) carry a prodigious deal of interest in low-cost photovoltaics. The possibility of tailored band gaps via quantum confinement effect facilitates photovoltaic devices to be tuned to allow their optical absorption bandwidths to match with the solar spectrum. Size, shape, and material composition are some of the significant factors which affect the optical and electronic properties of QDs. Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) are some of the most resourceful methods available for the microstructural characteristics of solid materials. These techniques can provide useful information about the structural, morphological and compositional properties of the specimen. In this focused review, we analyze the several types of QDs, their synthesis and characterization, exclusively morphological studies carried out on quantum dots for solar cell applications. Despite various advantages and techniques used for morphological characterization of QDs, very few reviews are reported in the past years. In this review, we have compiled the important and latest findings published on morphological analysis of QDs for photovoltaic applications which can provide the guideline for the research for the future work in the field. Bentham Science Publishers 2020 Article PeerReviewed Najeeb, Mansoor Ani and Ahmad, Zubair and Balamurugan, Sarkarainadar and Sulaiman, Khaulah and Shakoor, R. A. (2020) A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications. Current Nanoscience, 16 (4). pp. 544-555. ISSN 1573-4137, DOI https://doi.org/10.2174/1573413715666190206150619 <https://doi.org/10.2174/1573413715666190206150619>. 10.2174/1573413715666190206150619 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QD Chemistry T Technology (General) |
spellingShingle |
QD Chemistry T Technology (General) Najeeb, Mansoor Ani Ahmad, Zubair Balamurugan, Sarkarainadar Sulaiman, Khaulah Shakoor, R. A. A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications |
description |
Due to its various advantages, colloidal quantum dots (CQDs) carry a prodigious deal of interest in low-cost photovoltaics. The possibility of tailored band gaps via quantum confinement effect facilitates photovoltaic devices to be tuned to allow their optical absorption bandwidths to match with the solar spectrum. Size, shape, and material composition are some of the significant factors which affect the optical and electronic properties of QDs. Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) are some of the most resourceful methods available for the microstructural characteristics of solid materials. These techniques can provide useful information about the structural, morphological and compositional properties of the specimen. In this focused review, we analyze the several types of QDs, their synthesis and characterization, exclusively morphological studies carried out on quantum dots for solar cell applications. Despite various advantages and techniques used for morphological characterization of QDs, very few reviews are reported in the past years. In this review, we have compiled the important and latest findings published on morphological analysis of QDs for photovoltaic applications which can provide the guideline for the research for the future work in the field. |
format |
Article |
author |
Najeeb, Mansoor Ani Ahmad, Zubair Balamurugan, Sarkarainadar Sulaiman, Khaulah Shakoor, R. A. |
author_facet |
Najeeb, Mansoor Ani Ahmad, Zubair Balamurugan, Sarkarainadar Sulaiman, Khaulah Shakoor, R. A. |
author_sort |
Najeeb, Mansoor Ani |
title |
A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications |
title_short |
A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications |
title_full |
A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications |
title_fullStr |
A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications |
title_full_unstemmed |
A short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications |
title_sort |
short analysis on the morphological characterization of colloidal quantum dots for photovoltaic applications |
publisher |
Bentham Science Publishers |
publishDate |
2020 |
url |
http://eprints.um.edu.my/37127/ |
_version_ |
1768007311002959872 |
score |
13.211869 |