Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices

Let psi :circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni be a linear map on the Kronecker product of spaces of Hermitian matrices H-ni of size n(i) >= 3. (If d= 1, we identify circle times(d)(i=1) H-ni with H-ni.) We establish a condition under which psi (adj (circle times(d )(i=1)A(i))...

Full description

Saved in:
Bibliographic Details
Main Authors: Chooi, Wai Leong, Kwa, KiamHeong
Format: Article
Published: Taylor & Francis Ltd 2020
Subjects:
Online Access:http://eprints.um.edu.my/36698/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.um.eprints.36698
record_format eprints
spelling my.um.eprints.366982024-11-04T07:53:54Z http://eprints.um.edu.my/36698/ Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices Chooi, Wai Leong Kwa, KiamHeong QA Mathematics Let psi :circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni be a linear map on the Kronecker product of spaces of Hermitian matrices H-ni of size n(i) >= 3. (If d= 1, we identify circle times(d)(i=1) H-ni with H-ni.) We establish a condition under which psi (adj (circle times(d )(i=1)A(i))) = adj (psi(circle times(d )(i=1)A(i))) if and only if det (psi(circle times(d )(i=1)A(i))) = det (circle times(d )(i=1)A(i)) for all circle times(d )(i=1)A(i) is an element of circle times(d)(i=1) H-ni. Then for d is an element of {1,2}, we apply this fact to characterize maps psi : circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni such that psi (adj (circle times(d )(i=1)A(i))) = adj (psi(circle times(d )(i=1)A(i))) with some mild conditions. Taylor & Francis Ltd 2020-05 Article PeerReviewed Chooi, Wai Leong and Kwa, KiamHeong (2020) Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices. Linear & Multilinear Algebra, 68 (5). pp. 869-885. ISSN 03081087, DOI https://doi.org/10.1080/03081087.2018.1519010 <https://doi.org/10.1080/03081087.2018.1519010>. 10.1080/03081087.2018.1519010
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic QA Mathematics
spellingShingle QA Mathematics
Chooi, Wai Leong
Kwa, KiamHeong
Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices
description Let psi :circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni be a linear map on the Kronecker product of spaces of Hermitian matrices H-ni of size n(i) >= 3. (If d= 1, we identify circle times(d)(i=1) H-ni with H-ni.) We establish a condition under which psi (adj (circle times(d )(i=1)A(i))) = adj (psi(circle times(d )(i=1)A(i))) if and only if det (psi(circle times(d )(i=1)A(i))) = det (circle times(d )(i=1)A(i)) for all circle times(d )(i=1)A(i) is an element of circle times(d)(i=1) H-ni. Then for d is an element of {1,2}, we apply this fact to characterize maps psi : circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni such that psi (adj (circle times(d )(i=1)A(i))) = adj (psi(circle times(d )(i=1)A(i))) with some mild conditions.
format Article
author Chooi, Wai Leong
Kwa, KiamHeong
author_facet Chooi, Wai Leong
Kwa, KiamHeong
author_sort Chooi, Wai Leong
title Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices
title_short Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices
title_full Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices
title_fullStr Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices
title_full_unstemmed Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices
title_sort classical adjoint commuting and determinant preserving linear maps on kronecker products of hermitian matrices
publisher Taylor & Francis Ltd
publishDate 2020
url http://eprints.um.edu.my/36698/
_version_ 1814933260532187136
score 13.211869