A note on the mixed van der Waerden number
Let r >= 2, and let k(i) >= 2 for 1 <= i <= r. Mixed van der Waerden's theorem states that there exists a least positive integer w = w(k(1), k(2), k(3), ..., k(r); r) such that for any n >= w, every r-colouring of 1, n] admits a k(i)-term arithmetic progression with colour i for...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Korean Mathematical Society
2021
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/27156/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
id |
my.um.eprints.27156 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.271562022-05-25T07:33:06Z http://eprints.um.edu.my/27156/ A note on the mixed van der Waerden number Sim, Kai An Tan, Ta Sheng Wong, Kok Bin QA Mathematics Let r >= 2, and let k(i) >= 2 for 1 <= i <= r. Mixed van der Waerden's theorem states that there exists a least positive integer w = w(k(1), k(2), k(3), ..., k(r); r) such that for any n >= w, every r-colouring of 1, n] admits a k(i)-term arithmetic progression with colour i for some i is an element of 1, r]. For k >= 3 and r >= 2, the mixed van der Waerden number w(k, 2, 2, ..., 2; r) is denoted by w(2)(k; r). B. Landman and A. Robertson 9] showed that for k < r < 3/2 (k - 1) and r >= 2k + 2, the inequality w(2)(k; r) <= r(k - 1) holds. In this note, we establish some results on w(2)(k; r) for 2 <= r <= k. Korean Mathematical Society 2021 Article PeerReviewed Sim, Kai An and Tan, Ta Sheng and Wong, Kok Bin (2021) A note on the mixed van der Waerden number. Bulletin of the Korean Mathematical Society, 58 (6). pp. 1341-1354. ISSN 1015-8634, DOI https://doi.org/10.4134/BKMS.b200718 <https://doi.org/10.4134/BKMS.b200718>. 10.4134/BKMS.b200718 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Sim, Kai An Tan, Ta Sheng Wong, Kok Bin A note on the mixed van der Waerden number |
description |
Let r >= 2, and let k(i) >= 2 for 1 <= i <= r. Mixed van der Waerden's theorem states that there exists a least positive integer w = w(k(1), k(2), k(3), ..., k(r); r) such that for any n >= w, every r-colouring of 1, n] admits a k(i)-term arithmetic progression with colour i for some i is an element of 1, r]. For k >= 3 and r >= 2, the mixed van der Waerden number w(k, 2, 2, ..., 2; r) is denoted by w(2)(k; r). B. Landman and A. Robertson 9] showed that for k < r < 3/2 (k - 1) and r >= 2k + 2, the inequality w(2)(k; r) <= r(k - 1) holds. In this note, we establish some results on w(2)(k; r) for 2 <= r <= k. |
format |
Article |
author |
Sim, Kai An Tan, Ta Sheng Wong, Kok Bin |
author_facet |
Sim, Kai An Tan, Ta Sheng Wong, Kok Bin |
author_sort |
Sim, Kai An |
title |
A note on the mixed van der Waerden number |
title_short |
A note on the mixed van der Waerden number |
title_full |
A note on the mixed van der Waerden number |
title_fullStr |
A note on the mixed van der Waerden number |
title_full_unstemmed |
A note on the mixed van der Waerden number |
title_sort |
note on the mixed van der waerden number |
publisher |
Korean Mathematical Society |
publishDate |
2021 |
url |
http://eprints.um.edu.my/27156/ |
_version_ |
1735409506483961856 |
score |
13.251813 |