A novel photoanode based on Thorium oxide (ThO2) incorporated with graphitic Carbon nitride (g-C3N4) for Photoelectrochemical water splitting
In this study, a new insight into the doping engineering with nuclear fuel (ThO2) was performed and applied in photoelectrochemical (PEC) water splitting. The successfully synthesized g-C3N4/ThO2 (-5.8%) via thermal treatment and g-C3N4 polymerization (precursor: Urea, 30 min; 520 C) manifested a re...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2021
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/26799/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a new insight into the doping engineering with nuclear fuel (ThO2) was performed and applied in photoelectrochemical (PEC) water splitting. The successfully synthesized g-C3N4/ThO2 (-5.8%) via thermal treatment and g-C3N4 polymerization (precursor: Urea, 30 min; 520 C) manifested a remarkable and superior photocatalytic activity. The photocurrent density achieved for g-C3N4/ThO2 was 9.71 mu cm(-2) at 1.23 V vs. Ag/ AgCl under simulated light (100 mW/cm(2)) that is more than twice compared with the un-doped g-C3N4 (-4.23 mu A cm(-2)). The introduction of Thorium Nitrate during g-C3N4 polymerization altered the chemical bonding, structure, and morphology, with the improved PEC stability of the photoanode. Besides, doping with ThO2 increased the intensity of triazine and C-N bond in the g-C3N4 network, as observed by FT-IR analysis. The unique ``hollow cylindrical'' architecture also increased the surface area, light absorption, as well as the catalytic sites. The enhanced separation of photo-generated electron-hole pairs reduced the carrier recombination that was obviously probed via Photoluminescence spectra. Therefore, due to the photostability and the good performance, the g-C3N4/ThO2 composite can be envisioned as a potential candidate in the field of photocatalysis and prospectively be applied in PEC solar water splitting. |
---|