Entropy analysis of the discrete-time quantum walk under bit-flip noise channel

We study the behavior of tunable one-dimensional discrete-time quantum walk (DTQW) in the presence of decoherence modeled by the flip-bit noise channel. By varying the noise intensity, we obtain a wide range of probability distributions of noisy walks, which can be loosely characterized as pure quan...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ishak, Nur Izzati, Muniandy, S.V., Chong, Wu Yi
التنسيق: مقال
منشور في: Elsevier 2021
الموضوعات:
الوصول للمادة أونلاين:http://eprints.um.edu.my/26072/
https://doi.org/10.1016/j.physa.2021.126371
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id my.um.eprints.26072
record_format eprints
spelling my.um.eprints.260722021-12-29T02:08:21Z http://eprints.um.edu.my/26072/ Entropy analysis of the discrete-time quantum walk under bit-flip noise channel Ishak, Nur Izzati Muniandy, S.V. Chong, Wu Yi QC Physics We study the behavior of tunable one-dimensional discrete-time quantum walk (DTQW) in the presence of decoherence modeled by the flip-bit noise channel. By varying the noise intensity, we obtain a wide range of probability distributions of noisy walks, which can be loosely characterized as pure quantum walk, quantum-like walk, semi-classical like walk, and classical-like walk. We show the maximum Shannon entropy of the walk is not obtained under maximum decoherence, but instead at a lower degree of decoherence. This result may be useful for the implementation of quantum error correction, quantum cryptography, and quantum communication protocol, where one might expect the qubit internal state to be flipped due to noise. © 2021 Elsevier B.V. Elsevier 2021 Article PeerReviewed Ishak, Nur Izzati and Muniandy, S.V. and Chong, Wu Yi (2021) Entropy analysis of the discrete-time quantum walk under bit-flip noise channel. Physica A: Statistical Mechanics and its Applications, 584. p. 126371. ISSN 0378-4371 https://doi.org/10.1016/j.physa.2021.126371 doi:10.1016/j.physa.2021.126371
institution Universiti Malaya
building UM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaya
content_source UM Research Repository
url_provider http://eprints.um.edu.my/
topic QC Physics
spellingShingle QC Physics
Ishak, Nur Izzati
Muniandy, S.V.
Chong, Wu Yi
Entropy analysis of the discrete-time quantum walk under bit-flip noise channel
description We study the behavior of tunable one-dimensional discrete-time quantum walk (DTQW) in the presence of decoherence modeled by the flip-bit noise channel. By varying the noise intensity, we obtain a wide range of probability distributions of noisy walks, which can be loosely characterized as pure quantum walk, quantum-like walk, semi-classical like walk, and classical-like walk. We show the maximum Shannon entropy of the walk is not obtained under maximum decoherence, but instead at a lower degree of decoherence. This result may be useful for the implementation of quantum error correction, quantum cryptography, and quantum communication protocol, where one might expect the qubit internal state to be flipped due to noise. © 2021 Elsevier B.V.
format Article
author Ishak, Nur Izzati
Muniandy, S.V.
Chong, Wu Yi
author_facet Ishak, Nur Izzati
Muniandy, S.V.
Chong, Wu Yi
author_sort Ishak, Nur Izzati
title Entropy analysis of the discrete-time quantum walk under bit-flip noise channel
title_short Entropy analysis of the discrete-time quantum walk under bit-flip noise channel
title_full Entropy analysis of the discrete-time quantum walk under bit-flip noise channel
title_fullStr Entropy analysis of the discrete-time quantum walk under bit-flip noise channel
title_full_unstemmed Entropy analysis of the discrete-time quantum walk under bit-flip noise channel
title_sort entropy analysis of the discrete-time quantum walk under bit-flip noise channel
publisher Elsevier
publishDate 2021
url http://eprints.um.edu.my/26072/
https://doi.org/10.1016/j.physa.2021.126371
_version_ 1720980438666706944
score 13.251813