Topological Clustering via Adaptive Resonance Theory With Information Theoretic Learning
This paper proposes a topological clustering algorithm by integrating topological structure and information theoretic learning, i.e., correntropy, into adaptive resonance theory (ART). Specifically, the proposed algorithm utilizes the correntropy induced metric (CIM) for defining a similarity measur...
Saved in:
Main Authors: | Masuyama, Naoki, Loo, Chu Kiong, Ishibuchi, Hisao, Kubota, Naoyuki, Nojima, Yusuke, Liu, Yiping |
---|---|
格式: | Article |
出版: |
Institute of Electrical and Electronics Engineers
2019
|
主題: | |
在線閱讀: | http://eprints.um.edu.my/24041/ https://doi.org/10.1109/ACCESS.2019.2921832 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Privacy-Preserving Continual Federated Clustering via Adaptive Resonance Theory
由: Masuyama, Naoki, et al.
出版: (2024) -
Divisive hierarchical clustering based on adaptive resonance theory
由: Yamada, Yuna, et al.
出版: (2020) -
A Kernel Bayesian Adaptive Resonance Theory with A Topological Structure
由: Masuyama, Naoki, et al.
出版: (2019) -
Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning
由: Masuyama, Naoki, et al.
出版: (2018) -
A Multi-Agent Approach for Personalized Hypertension Risk Prediction
由: Abrar, Sundus, et al.
出版: (2021)