Topological Clustering via Adaptive Resonance Theory With Information Theoretic Learning

This paper proposes a topological clustering algorithm by integrating topological structure and information theoretic learning, i.e., correntropy, into adaptive resonance theory (ART). Specifically, the proposed algorithm utilizes the correntropy induced metric (CIM) for defining a similarity measur...

全面介紹

Saved in:
書目詳細資料
Main Authors: Masuyama, Naoki, Loo, Chu Kiong, Ishibuchi, Hisao, Kubota, Naoyuki, Nojima, Yusuke, Liu, Yiping
格式: Article
出版: Institute of Electrical and Electronics Engineers 2019
主題:
在線閱讀:http://eprints.um.edu.my/24041/
https://doi.org/10.1109/ACCESS.2019.2921832
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

相似書籍