Topological Clustering via Adaptive Resonance Theory With Information Theoretic Learning

This paper proposes a topological clustering algorithm by integrating topological structure and information theoretic learning, i.e., correntropy, into adaptive resonance theory (ART). Specifically, the proposed algorithm utilizes the correntropy induced metric (CIM) for defining a similarity measur...

詳細記述

保存先:
書誌詳細
主要な著者: Masuyama, Naoki, Loo, Chu Kiong, Ishibuchi, Hisao, Kubota, Naoyuki, Nojima, Yusuke, Liu, Yiping
フォーマット: 論文
出版事項: Institute of Electrical and Electronics Engineers 2019
主題:
オンライン・アクセス:http://eprints.um.edu.my/24041/
https://doi.org/10.1109/ACCESS.2019.2921832
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料