Topological Clustering via Adaptive Resonance Theory With Information Theoretic Learning
This paper proposes a topological clustering algorithm by integrating topological structure and information theoretic learning, i.e., correntropy, into adaptive resonance theory (ART). Specifically, the proposed algorithm utilizes the correntropy induced metric (CIM) for defining a similarity measur...
保存先:
主要な著者: | Masuyama, Naoki, Loo, Chu Kiong, Ishibuchi, Hisao, Kubota, Naoyuki, Nojima, Yusuke, Liu, Yiping |
---|---|
フォーマット: | 論文 |
出版事項: |
Institute of Electrical and Electronics Engineers
2019
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/24041/ https://doi.org/10.1109/ACCESS.2019.2921832 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Privacy-Preserving Continual Federated Clustering via Adaptive Resonance Theory
著者:: Masuyama, Naoki, 等
出版事項: (2024) -
Divisive hierarchical clustering based on adaptive resonance theory
著者:: Yamada, Yuna, 等
出版事項: (2020) -
A Kernel Bayesian Adaptive Resonance Theory with A Topological Structure
著者:: Masuyama, Naoki, 等
出版事項: (2019) -
Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning
著者:: Masuyama, Naoki, 等
出版事項: (2018) -
A Multi-Agent Approach for Personalized Hypertension Risk Prediction
著者:: Abrar, Sundus, 等
出版事項: (2021)