Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but util...
保存先:
主要な著者: | Illias, Hazlee Azil, Wee, Zhao Liang |
---|---|
フォーマット: | 論文 |
出版事項: |
Public Library of Science
2018
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/21817/ https://doi.org/10.1371/journal.pone.0191366 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Fault identification in power transformers using dissolve gas analysis and support vector machine
著者:: Illias, Hazlee Azil, 等 -
Optimisation of PID controller for load frequency control in two-area power system using evolutionary particle swarm optimisation
著者:: Illias, Hazlee Azil, 等
出版事項: (2016) -
Transformer incipient fault prediction using combined artificial neural network and various particle swarm optimisation techniques
著者:: Illias, Hazlee Azil, 等
出版事項: (2015) -
Efficient evolutionary particle swarm optimization approach for nonconvex economic load dispatch problem
著者:: Abdullah, M.N., 等
出版事項: (2013) -
Fault Identification in Power Transformers Using Dissolve Gas Analysis and Support Vector Machine
著者:: Illias H.A., 等
出版事項: (2023)