Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but util...

詳細記述

保存先:
書誌詳細
主要な著者: Illias, Hazlee Azil, Wee, Zhao Liang
フォーマット: 論文
出版事項: Public Library of Science 2018
主題:
オンライン・アクセス:http://eprints.um.edu.my/21817/
https://doi.org/10.1371/journal.pone.0191366
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料