Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir

Evaporation as a major meteorological component of the hydrologic cycle plays a key role in water resources studies and climate change. The estimation of evaporation is a complex and unsteady process, so it is difficult to derive an accurate physical-based formula to represent all parameters that ef...

Full description

Saved in:
Bibliographic Details
Main Authors: Allawi, Mohammed Falah, El-Shafie, Ahmed
Format: Article
Published: Springer Verlag 2016
Subjects:
Online Access:http://eprints.um.edu.my/18245/
https://doi.org/10.1007/s11269-016-1452-1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evaporation as a major meteorological component of the hydrologic cycle plays a key role in water resources studies and climate change. The estimation of evaporation is a complex and unsteady process, so it is difficult to derive an accurate physical-based formula to represent all parameters that effect on estimate evaporation. Artificial intelligence-based methods may provide reliable prediction models for several applications in engineering. In this research have been introduced twelve networks with the RBF-NN and ANFIS methods. These models have applied to prediction daily evaporation at Layang reservoir, located in the southeast part of Malaysia. The used meteorological data set to develop the models for prediction daily evaporation rate from water surface for Layang reservoir includes daily air temperature, solar radiation, pan evaporation, and relative humidity that measured at a case study for fourteen years. The obtained result denote to the superiority of the RBF-NN models on the ANFIS models. A comparison of the model performance between RBF-NN and ANFIS models indicated that RBF-NN method presents the best estimates of daily evaporation rate with the minimum MSE 0.0471 , MAE 0.0032, RE and maximum R2 0.963.