Inversion of quasi-3D DC resistivity imaging data using artificial neural networks
The objective of this paper is to investigate the applicability of Artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Indian Acad Sciences
2010
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/15242/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.um.eprints.15242 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.152422015-12-23T02:39:50Z http://eprints.um.edu.my/15242/ Inversion of quasi-3D DC resistivity imaging data using artificial neural networks Neyamadpour, A. Abdullah, W.A.T.W. Taib, S. T Technology (General) The objective of this paper is to investigate the applicability of Artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100 Omega m resistivity with an embedded anomalous body of 1000 Omega m resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately. Indian Acad Sciences 2010 Article PeerReviewed Neyamadpour, A. and Abdullah, W.A.T.W. and Taib, S. (2010) Inversion of quasi-3D DC resistivity imaging data using artificial neural networks. Journal of Earth System Science, 119 (1). pp. 27-40. |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
T Technology (General) |
spellingShingle |
T Technology (General) Neyamadpour, A. Abdullah, W.A.T.W. Taib, S. Inversion of quasi-3D DC resistivity imaging data using artificial neural networks |
description |
The objective of this paper is to investigate the applicability of Artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100 Omega m resistivity with an embedded anomalous body of 1000 Omega m resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately. |
format |
Article |
author |
Neyamadpour, A. Abdullah, W.A.T.W. Taib, S. |
author_facet |
Neyamadpour, A. Abdullah, W.A.T.W. Taib, S. |
author_sort |
Neyamadpour, A. |
title |
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks |
title_short |
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks |
title_full |
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks |
title_fullStr |
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks |
title_full_unstemmed |
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks |
title_sort |
inversion of quasi-3d dc resistivity imaging data using artificial neural networks |
publisher |
Indian Acad Sciences |
publishDate |
2010 |
url |
http://eprints.um.edu.my/15242/ |
_version_ |
1643690011150778368 |
score |
13.223943 |