Process monitoring and fault detection in nonlinear chemical process based on multi-scale Kernel Fisher discriminant analysis
This paper presents a multi-scale kernel Fisher discriminant analysis (MSKFDA) algorithm combining Fisher discriminant analysis (FDA) and its nonlinear kernel variation with the wavelet analysis. This approach is proposed for investigating the potential integration of wavelets and multi-scale method...
Saved in:
Main Authors: | Md Nor, Norazwan, Hussain, Mohd Azlan, Che Hassan, Che Rosmani |
---|---|
格式: | Conference or Workshop Item |
语言: | English |
出版: |
2015
|
主题: | |
在线阅读: | http://eprints.um.edu.my/14131/1/Process_Monitoring_and_Fault_Detection.pdf http://eprints.um.edu.my/14131/ |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
A framework for data-driven fault detection and identification with multiscale kernel fisher discriminant analysis in chemical process systems / Norazwan Md Nor
由: Norazwan , Md Nor
出版: (2018) -
A review of data-driven fault detection and diagnosis methods: applications in chemical process systems
由: Nor, Norazwan Md, et al.
出版: (2020) -
Face recognition using integrated discrete cosine transform and kernel fisher discriminant analysis
由: Janahiraman T.V., et al.
出版: (2023) -
Nonlinear Chemical Process Monitoring And Fault Detection Based On Modified Lstm Model
由: Zambri, Muhammad Ridzuan
出版: (2022) -
Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS
由: Lau, C.K., et al.
出版: (2013)