Process monitoring and fault detection in nonlinear chemical process based on multi-scale Kernel Fisher discriminant analysis
This paper presents a multi-scale kernel Fisher discriminant analysis (MSKFDA) algorithm combining Fisher discriminant analysis (FDA) and its nonlinear kernel variation with the wavelet analysis. This approach is proposed for investigating the potential integration of wavelets and multi-scale method...
محفوظ في:
المؤلفون الرئيسيون: | Md Nor, Norazwan, Hussain, Mohd Azlan, Che Hassan, Che Rosmani |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.um.edu.my/14131/1/Process_Monitoring_and_Fault_Detection.pdf http://eprints.um.edu.my/14131/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A framework for data-driven fault detection and identification with multiscale kernel fisher discriminant analysis in chemical process systems / Norazwan Md Nor
بواسطة: Norazwan , Md Nor
منشور في: (2018) -
A review of data-driven fault detection and diagnosis methods: applications in chemical process systems
بواسطة: Nor, Norazwan Md, وآخرون
منشور في: (2020) -
Face recognition using integrated discrete cosine transform and kernel fisher discriminant analysis
بواسطة: Janahiraman T.V., وآخرون
منشور في: (2023) -
Nonlinear Chemical Process Monitoring And Fault Detection Based On Modified Lstm Model
بواسطة: Zambri, Muhammad Ridzuan
منشور في: (2022) -
Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS
بواسطة: Lau, C.K., وآخرون
منشور في: (2013)