Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam

Smart Materials (SM) are innovative materials with several applications, including the aerospace sector, biomedicine, and others. Shape memory alloys (SMA), piezoelectric materials, magnetostrictive materials, and electrostrictive materials are some of the categories. Powder metallurgy (PM) is the s...

Full description

Saved in:
Bibliographic Details
Main Author: Norizam, Nur Adryna Farhana
Format: Student Project
Language:English
Published: 2022
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/83247/2/83247.pdf
https://ir.uitm.edu.my/id/eprint/83247/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uitm.ir.83247
record_format eprints
spelling my.uitm.ir.832472023-09-21T04:36:14Z https://ir.uitm.edu.my/id/eprint/83247/ Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam Norizam, Nur Adryna Farhana Metals Smart Materials (SM) are innovative materials with several applications, including the aerospace sector, biomedicine, and others. Shape memory alloys (SMA), piezoelectric materials, magnetostrictive materials, and electrostrictive materials are some of the categories. Powder metallurgy (PM) is the study of metal powder processing, which involves the synthesis, characterization, and conversion of metal powder into usable engineering components. The benefits of the PM technique include the ability to create unique designs that are difficult to construct using standard techniques, as well as the economic and distinctive characteristics of PM to generate multipart products, which make SM fabricated by PM increasingly appealing for substituting wrought materials. Several studies on SM and PM have been conducted; nevertheless, there are far too many powder metallurgical approaches for producing SM. As a result, researchers are unable to determine which strategy is optimal for increasing the characteristics of SM using PM, hence development is slow. The purpose of this study is to examine the evidence for a relationship between SM and PM. Based on the results, shape memory polymers (SMPs) are the best form of SMAs since they have great strain recovery, low density, cheap cost, simple manufacture, biocompatibility, biodegradability, mouldability, and lightweight. Furthermore, due to its lead-free perovskite, high dielectric permittivity, and good piezoelectric coefficient, BaTiO3 is regarded as the best piezoelectric material. Direct Ink Writing and Spark Plasma Sintering are the ideal production technologies for SMPs and BaTiO3, respectively. This research will be valuable to academics seeking the best PM techniques for SMPs and BaTiO3. The present trends in SMP and BaTiO3 production were the primary focus of this review. In the future, this study should provide more detailed information on advanced PM approaches, notably DIW and SPS. 2022 Student Project NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/83247/2/83247.pdf Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam. (2022) [Student Project] <http://terminalib.uitm.edu.my/83247.pdf> (Submitted)
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Metals
spellingShingle Metals
Norizam, Nur Adryna Farhana
Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam
description Smart Materials (SM) are innovative materials with several applications, including the aerospace sector, biomedicine, and others. Shape memory alloys (SMA), piezoelectric materials, magnetostrictive materials, and electrostrictive materials are some of the categories. Powder metallurgy (PM) is the study of metal powder processing, which involves the synthesis, characterization, and conversion of metal powder into usable engineering components. The benefits of the PM technique include the ability to create unique designs that are difficult to construct using standard techniques, as well as the economic and distinctive characteristics of PM to generate multipart products, which make SM fabricated by PM increasingly appealing for substituting wrought materials. Several studies on SM and PM have been conducted; nevertheless, there are far too many powder metallurgical approaches for producing SM. As a result, researchers are unable to determine which strategy is optimal for increasing the characteristics of SM using PM, hence development is slow. The purpose of this study is to examine the evidence for a relationship between SM and PM. Based on the results, shape memory polymers (SMPs) are the best form of SMAs since they have great strain recovery, low density, cheap cost, simple manufacture, biocompatibility, biodegradability, mouldability, and lightweight. Furthermore, due to its lead-free perovskite, high dielectric permittivity, and good piezoelectric coefficient, BaTiO3 is regarded as the best piezoelectric material. Direct Ink Writing and Spark Plasma Sintering are the ideal production technologies for SMPs and BaTiO3, respectively. This research will be valuable to academics seeking the best PM techniques for SMPs and BaTiO3. The present trends in SMP and BaTiO3 production were the primary focus of this review. In the future, this study should provide more detailed information on advanced PM approaches, notably DIW and SPS.
format Student Project
author Norizam, Nur Adryna Farhana
author_facet Norizam, Nur Adryna Farhana
author_sort Norizam, Nur Adryna Farhana
title Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam
title_short Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam
title_full Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam
title_fullStr Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam
title_full_unstemmed Smart Materials fabricated by powder metallurgy: a review / Nur Adryna Farhana Norizam
title_sort smart materials fabricated by powder metallurgy: a review / nur adryna farhana norizam
publishDate 2022
url https://ir.uitm.edu.my/id/eprint/83247/2/83247.pdf
https://ir.uitm.edu.my/id/eprint/83247/
_version_ 1778165936731193344
score 13.211869