Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli
Comparison of four different environments (border, seaside, free space and forest) on measuring the wind clutter using forward scatter radar (FSR) operates in ultra-high and very high frequency (UHF and VHF) bands is analyzed in this paper. In this project, clutter level ranging from low, medium, st...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2017
|
Online Access: | https://ir.uitm.edu.my/id/eprint/81467/1/81467.pdf https://ir.uitm.edu.my/id/eprint/81467/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uitm.ir.81467 |
---|---|
record_format |
eprints |
spelling |
my.uitm.ir.814672023-11-07T09:16:24Z https://ir.uitm.edu.my/id/eprint/81467/ Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli Zulkifli, Nur Alia Comparison of four different environments (border, seaside, free space and forest) on measuring the wind clutter using forward scatter radar (FSR) operates in ultra-high and very high frequency (UHF and VHF) bands is analyzed in this paper. In this project, clutter level ranging from low, medium, strong and very strong on each locations were studied. The pattern of wind clutter level measurement characteristics is investigated and executed using distribution models at different operating frequencies as well as comparing the data distributions of four different locations in order to identify the best distribution model. Sample of data in form of Real Strength Signal Indicator (RSSI) signals is evaluated using five distributions model (Log-Normal, Log-Logistic, Gamma, Weibull and Nakagami). This comparison justified that Border suits the best location as the strongest clutter area amidst Seaside and Free space, while Forest is determined as the lowest clutter area as the accurate distribution of clutter model. The parameters of the five distributions are evaluated using maximum likelihood estimation (MLE) approach followed by Goodness of Fit (GOF) method by using Root Mean Square Error (RMSE) test to prove the best distributions among. Gamma distribution model is discovered as the best distribution model in this research for foliage clutter for all cases of frequency bands and four environments. 2017 Thesis NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/81467/1/81467.pdf Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli. (2017) Masters thesis, thesis, Universiti Teknologi MARA (UiTM). |
institution |
Universiti Teknologi Mara |
building |
Tun Abdul Razak Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Mara |
content_source |
UiTM Institutional Repository |
url_provider |
http://ir.uitm.edu.my/ |
language |
English |
description |
Comparison of four different environments (border, seaside, free space and forest) on measuring the wind clutter using forward scatter radar (FSR) operates in ultra-high and very high frequency (UHF and VHF) bands is analyzed in this paper. In this project, clutter level ranging from low, medium, strong and very strong on each locations were studied. The pattern of wind clutter level measurement characteristics is investigated and executed using distribution models at different operating frequencies as well as comparing the data distributions of four different locations in order to identify the best distribution model. Sample of data in form of Real Strength Signal Indicator (RSSI) signals is evaluated using five distributions model (Log-Normal, Log-Logistic, Gamma, Weibull and Nakagami). This comparison justified that Border suits the best location as the strongest clutter area amidst Seaside and Free space, while Forest is determined as the lowest clutter area as the accurate distribution of clutter model. The parameters of the five distributions are evaluated using maximum likelihood estimation (MLE) approach followed by Goodness of Fit (GOF) method by using Root Mean Square Error (RMSE) test to prove the best distributions among. Gamma distribution model is discovered as the best distribution model in this research for foliage clutter for all cases of frequency bands and four environments. |
format |
Thesis |
author |
Zulkifli, Nur Alia |
spellingShingle |
Zulkifli, Nur Alia Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli |
author_facet |
Zulkifli, Nur Alia |
author_sort |
Zulkifli, Nur Alia |
title |
Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli |
title_short |
Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli |
title_full |
Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli |
title_fullStr |
Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli |
title_full_unstemmed |
Clutter distribution analysis of a tropical foliage clutter for different environments based on FSR micro-sensor network / Nur Alia Zulkifli |
title_sort |
clutter distribution analysis of a tropical foliage clutter for different environments based on fsr micro-sensor network / nur alia zulkifli |
publishDate |
2017 |
url |
https://ir.uitm.edu.my/id/eprint/81467/1/81467.pdf https://ir.uitm.edu.my/id/eprint/81467/ |
_version_ |
1783882180748902400 |
score |
13.211869 |