Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi

Composite laminates are widely used in engineering applications due to its high mechanical properties which is advantageous for critical engineering structures. Despite possessing major advantages, lack of test data to support the usage of the material promptly halt the advancement of composite lami...

Full description

Saved in:
Bibliographic Details
Main Author: Raheimi, Amirulaminnur
Format: Thesis
Language:English
Published: 2020
Subjects:
Online Access:http://ir.uitm.edu.my/id/eprint/32541/1/32541.pdf
http://ir.uitm.edu.my/id/eprint/32541/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uitm.ir.32541
record_format eprints
spelling my.uitm.ir.325412020-09-03T09:13:38Z http://ir.uitm.edu.my/id/eprint/32541/ Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi Raheimi, Amirulaminnur Power resources Mechanics applied to machinery. Dynamics Renewable energy sources Composite laminates are widely used in engineering applications due to its high mechanical properties which is advantageous for critical engineering structures. Despite possessing major advantages, lack of test data to support the usage of the material promptly halt the advancement of composite laminates applications in industries. This research is carried out to analyse the geometrical effects on guided wave propagation in fiberglass composite laminate and scattering by delamination in fiberglass composite laminate. By utilizing Matlab and Abaqus/Explicit software, simulation of three-dimensional (3D) Finite Element (FE) fiberglass model is conducted and the signal obtained afterwards is processed and analysed. Four monitoring points strategy is implemented to assess guided wave signals. A few models are tested with different influencing factors which are thickness, excitation frequency, angle of monitoring points, and presence of delamination’s. The results are then presented to properly differentiate the signal behaviour and wave field relative to parameter adjustments. Guided wave profile retains its shape at varying thickness, better defect detection in [0/90]° layup arrangement, ideal excitation frequency of 130 kHz and negligible factor of monitoring directions in fiberglass plate. Distinct scattering behaviour of guided wave is ascertained from the back scattering, forward scattering, and energy concentration within delamination, which contributed to proper and ease of delamination’s identification in fiberglass composite laminates. These findings will contributed to overall integrity and reliability of non-destructive testing (NDT) inspection in composite structures. 2020-03 Thesis NonPeerReviewed text en http://ir.uitm.edu.my/id/eprint/32541/1/32541.pdf Raheimi, Amirulaminnur (2020) Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi. Masters thesis, Universiti Teknologi MARA.
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Power resources
Mechanics applied to machinery. Dynamics
Renewable energy sources
spellingShingle Power resources
Mechanics applied to machinery. Dynamics
Renewable energy sources
Raheimi, Amirulaminnur
Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi
description Composite laminates are widely used in engineering applications due to its high mechanical properties which is advantageous for critical engineering structures. Despite possessing major advantages, lack of test data to support the usage of the material promptly halt the advancement of composite laminates applications in industries. This research is carried out to analyse the geometrical effects on guided wave propagation in fiberglass composite laminate and scattering by delamination in fiberglass composite laminate. By utilizing Matlab and Abaqus/Explicit software, simulation of three-dimensional (3D) Finite Element (FE) fiberglass model is conducted and the signal obtained afterwards is processed and analysed. Four monitoring points strategy is implemented to assess guided wave signals. A few models are tested with different influencing factors which are thickness, excitation frequency, angle of monitoring points, and presence of delamination’s. The results are then presented to properly differentiate the signal behaviour and wave field relative to parameter adjustments. Guided wave profile retains its shape at varying thickness, better defect detection in [0/90]° layup arrangement, ideal excitation frequency of 130 kHz and negligible factor of monitoring directions in fiberglass plate. Distinct scattering behaviour of guided wave is ascertained from the back scattering, forward scattering, and energy concentration within delamination, which contributed to proper and ease of delamination’s identification in fiberglass composite laminates. These findings will contributed to overall integrity and reliability of non-destructive testing (NDT) inspection in composite structures.
format Thesis
author Raheimi, Amirulaminnur
author_facet Raheimi, Amirulaminnur
author_sort Raheimi, Amirulaminnur
title Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi
title_short Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi
title_full Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi
title_fullStr Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi
title_full_unstemmed Finite element analysis of guided ultrasonic waves in fiberglass composite laminates / Amirulaminnur Raheimi
title_sort finite element analysis of guided ultrasonic waves in fiberglass composite laminates / amirulaminnur raheimi
publishDate 2020
url http://ir.uitm.edu.my/id/eprint/32541/1/32541.pdf
http://ir.uitm.edu.my/id/eprint/32541/
_version_ 1685650937828343808
score 13.22586