A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli
The rapid development of wireless communication systems in recent years has created a strong need for the development of new antenna structures. In this context, reconfigurable antennas have become very attractive for modern wireless communications because they allow the use of a single antenna for...
Saved in:
Main Author: | |
---|---|
Format: | Book Section |
Language: | English |
Published: |
Institute of Graduate Studies, UiTM
2015
|
Subjects: | |
Online Access: | http://ir.uitm.edu.my/id/eprint/19586/1/ABS_NURULAZLINA%20RAMLI%20TDRA%20VOL%208%20IGS%2015.pdf http://ir.uitm.edu.my/id/eprint/19586/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uitm.ir.19586 |
---|---|
record_format |
eprints |
spelling |
my.uitm.ir.195862018-06-12T05:58:39Z http://ir.uitm.edu.my/id/eprint/19586/ A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli Ramli, Nurulazlina Malaysia The rapid development of wireless communication systems in recent years has created a strong need for the development of new antenna structures. In this context, reconfigurable antennas have become very attractive for modern wireless communications because they allow the use of a single antenna for multiple systems. The research described in this thesis introduces the concept of reconfigurable antennas that are capable to operate at two different operating frequencies, either at 2.6 GHz or 3.5 GHz and were able to switch their beam control to various patterns. At the early stage of this project, a new frequency reconfigurable antenna design namely Aperture Coupler - Reconfigurable Stacked Patch Microstrip Antenna (AC-FRSPMA) of Structure 1 and Structure 2 with different substrate materials was constructed. It uses a combination of aperture-coupled technique and stacked patch for the radiating elements to reduce the spurious radiation and increase the bandwidth performance. These designs successfully achieved frequency reconfigurability by implementing new coupling methods in the aperture coupled technique. The used of C-foam material in Structure 2 contributed to the high gain performance as compared to Structure 1 due to its characteristics which is similar to air. Then, by applying these concepts, three new reconfigurable antenna designs which can operates either at 2.6 GHz (WiMAX) or 3.5 GHz (LTE)… Institute of Graduate Studies, UiTM 2015 Book Section PeerReviewed text en http://ir.uitm.edu.my/id/eprint/19586/1/ABS_NURULAZLINA%20RAMLI%20TDRA%20VOL%208%20IGS%2015.pdf Ramli, Nurulazlina (2015) A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli. In: The Doctoral Research Abstracts. IGS Biannual Publication, 8 (8). Institute of Graduate Studies, UiTM, Shah Alam. |
institution |
Universiti Teknologi Mara |
building |
Tun Abdul Razak Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Mara |
content_source |
UiTM Institutional Repository |
url_provider |
http://ir.uitm.edu.my/ |
language |
English |
topic |
Malaysia |
spellingShingle |
Malaysia Ramli, Nurulazlina A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli |
description |
The rapid development of wireless communication systems in recent years has created a strong need for the development of new antenna structures. In this context, reconfigurable antennas have become very attractive for modern wireless communications because they allow the use of a single antenna for multiple systems. The research described in this thesis introduces the concept of reconfigurable antennas that are capable to operate at two different operating frequencies, either at 2.6 GHz or 3.5 GHz and were able to switch their beam control to various patterns. At the early stage of this project, a new frequency reconfigurable antenna design namely Aperture Coupler - Reconfigurable Stacked Patch Microstrip Antenna (AC-FRSPMA) of Structure 1 and Structure 2 with different substrate materials was constructed. It uses a combination of aperture-coupled technique and stacked patch for the radiating elements to reduce the spurious radiation and increase the bandwidth performance. These designs successfully achieved frequency reconfigurability by implementing new coupling methods in the aperture coupled technique. The used of C-foam material in Structure 2 contributed to the high gain performance as compared to Structure 1 due to its characteristics which is similar to air. Then, by applying these concepts, three new reconfigurable antenna designs which can operates either at 2.6 GHz (WiMAX) or 3.5 GHz (LTE)… |
format |
Book Section |
author |
Ramli, Nurulazlina |
author_facet |
Ramli, Nurulazlina |
author_sort |
Ramli, Nurulazlina |
title |
A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli |
title_short |
A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli |
title_full |
A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli |
title_fullStr |
A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli |
title_full_unstemmed |
A reconfigurable stacked patch microstrip array antenna / Nurulazlina Ramli |
title_sort |
reconfigurable stacked patch microstrip array antenna / nurulazlina ramli |
publisher |
Institute of Graduate Studies, UiTM |
publishDate |
2015 |
url |
http://ir.uitm.edu.my/id/eprint/19586/1/ABS_NURULAZLINA%20RAMLI%20TDRA%20VOL%208%20IGS%2015.pdf http://ir.uitm.edu.my/id/eprint/19586/ |
_version_ |
1685649233283121152 |
score |
13.211869 |