On non-ergodic volterra cubic stochastic operators
Let Sm−1 be the simplex in Rm , and V:Sm−1→Sm−1 be a nonlinear mapping then this operator satisfies an ergodic theorem if the limit limn→∞1n∑k=1nVk(x) exists for every x∈Sm−1 . It is a well known fact that this ergodicity may fail for Volterra quadratic operators, so it is natural to char...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English English English |
Published: |
Springer
2019
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/73972/1/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_article.pdf http://irep.iium.edu.my/73972/2/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_scopus.pdf http://irep.iium.edu.my/73972/3/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_wos.pdf http://irep.iium.edu.my/73972/ https://link.springer.com/article/10.1007/s12346-019-00334-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Internet
http://irep.iium.edu.my/73972/1/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_article.pdfhttp://irep.iium.edu.my/73972/2/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_scopus.pdf
http://irep.iium.edu.my/73972/3/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_wos.pdf
http://irep.iium.edu.my/73972/
https://link.springer.com/article/10.1007/s12346-019-00334-8