Squeezing, mixed mode squeezing, amplitude squared squeezing and principal squeezing in a non-degenerate parametric oscillator

The Hamiltonian and hence the equation of motion of the field operators of a nondegenerate parametric oscillator (NDPO) under the influence of classical pump are formulated. The coupled operator differential equations involving the signal and idler modes are decoupled at the expense of fourth ord...

Full description

Saved in:
Bibliographic Details
Main Authors: Alam, Mohosin, Mandal, Swapan Kumar, Wahiddin, Mohamed Ridza
Format: Article
Language:English
English
English
Published: Elsevier 2018
Subjects:
Online Access:http://irep.iium.edu.my/61658/1/61658_Squeezing%2C%20mixed%20mode%20squeezing%2C%20amplitude.pdf
http://irep.iium.edu.my/61658/2/61658_Squeezing%2C%20mixed%20mode%20squeezing%2C%20amplitude_SCOPUS.pdf
http://irep.iium.edu.my/61658/3/61658_Squeezing%2C%20mixed%20mode%20squeezing%2C%20amplitude_WOS.pdf
http://irep.iium.edu.my/61658/
https://www.sciencedirect.com/science/article/pii/S0030402617315334?via%3Dihub
https://doi.org/10.1016/j.ijleo.2017.11.113
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Hamiltonian and hence the equation of motion of the field operators of a nondegenerate parametric oscillator (NDPO) under the influence of classical pump are formulated. The coupled operator differential equations involving the signal and idler modes are decoupled at the expense of fourth order differential equations involving the c-numbers. Without using the rotating wave approximation, the analytical solutions of the field operators are obtained. These solutions are approximated up to the second orders in dimensionless coupling constant. We investigate the squeezing, mixed mode squeezing, amplitude-squared squeezing, and the principal squeezing of the thermal and coherent light coupled to the NDPO. By using the input composite number state, we establish that the percentage and the range (interaction time) of squeezing is considerably increased with the increase of the signal photon number. For initial composite number state, the amplitude squared squeezing for Ys quadrature is obtained at the cost of canonically conjugate Zs quadrature. The percentage of amplitude squared squeezing increases significantly with the increase of signal excitation (photon). The so-called normal squeezing and the principal squeezing are also indicated for the NDPO coupled with the initially prepared composite coherent states not in the composite number states. In spite of the shortcomings of the analytical solutions, we obtain squeezing, amplitude squared squeezing and other nonclassical effects which are unavailable under the rotating wave approximation. In order to give the feelings about the analytical results (expressions), we give some symbolic calculations relevant to the possible experimental situations.