A preliminary study on detection of lung cancer cells based on volatile organic compounds sensing using electronic nose

This paper proposes a preliminary investigation on the volatile production patterns generated from three sets of in-vitro cancerous cell samples of headspace that contains volatile organic compounds using the electronic nose system. A commercialized electronic nose consisting of 32 conducting polyme...

Full description

Saved in:
Bibliographic Details
Main Authors: Thriumani, Reena, Jeffree, Amanina Iymia, Zakaria, Ammar, Hashim, Yumi Zuhanis Has-Yun, Mohamed Helmy, Khaled, Omar, Mohammad Iqbal, Abdul Hamid, Adom, Shakaff, Ali Yeon, Kamarudin, Latifah Munirah
Format: Article
Language:English
Published: Universiti Teknologi Malaysia 2015
Subjects:
Online Access:http://irep.iium.edu.my/47162/1/Paper_-_Thriumani_et_al_2015_%28J._Teknol%29.pdf
http://irep.iium.edu.my/47162/
http://www.jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/6250
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a preliminary investigation on the volatile production patterns generated from three sets of in-vitro cancerous cell samples of headspace that contains volatile organic compounds using the electronic nose system. A commercialized electronic nose consisting of 32 conducting polymer sensors (Cyranose 320) is used to analyze the three classes of signals which are lung cancer cells grown in media, breast cancer cells grown in media and the blank media (without cells). Neural Network (PNN) based classification technique is applied to investigate the performance of an electronic nose (E-nose) system for cancerous lung cell classification. Kertas in membincangkan satu penyiasatan awal keatas corak yang dijana oleh ruapan sebation organic (VOC) daripada tiga set ‘in-vitro’ sel kanser sampel. ‘VOC’ daripada ‘headspace’ sampel dikumpulkan dengan menggunakan sistem hidung elektronik (ENose). E-Nose komersial yang terdiri daripada 32 sensor polimer (Cyranose 320) digunakan untuk menganalisis tiga jenis kelas iaitu sel-sel kanser paru-paru di dalam media, sel-sel kanser payudara di dalam media dan media kosong (tanpa sel-sel). Teknik pengelasan berasaskan ‘Neural Network’ (PNN) digunakan untuk menyiasat prestasi sistem E-Nose untuk membezakan kanser sel paru-paru.